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WEAKLY PROTECTED NODES IN RANDOM BINARY SEARCH

TREES

Ezzat Mohammad Nezhad1, Mehri Javanian2,*

and Ramin Imany Nabiyyi1

Abstract. Here, we derive the exact mean and variance of the number of weakly protected nodes
(the nodes that are not leaves and at least one of their children is not a leaf) in binary search trees
grown from random permutations. Furthermore, by using contraction method, we prove normal limit
law for a properly normalized version of this tree parameter.
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1. Definitions

Let P = (p1, p2, . . . , pn) be a uniformly random permutation of {1, 2, . . . , n}. A random binary search tree is
generated by P as follows. The elements of P serve as keys. The keys are stored in the internal nodes of the tree.
The root of the tree stores the first key p1. The second key p2 is compared with p1. If p2 < p1, then p2 becomes
root of the left subtree; otherwise, p2 becomes root of the right subtree. The process repeats on subsequent keys
in the same manner. Note that a uniform probability distribution on permutations does not induce a uniform
probability distribution on binary search trees [5]. Figure 1 shows an example of a binary search tree.

In a rooted tree, a protected node is a node that is not a leaf and none of its children is a leaf. For many
types of random trees, protected nodes have been investigated in numerous papers, see for instance [1–4, 6].

By a weakly protected node, we mean a node that is not a leaf and at least one of its children is not a leaf.
Figure 1 illustrates the protected nodes and weakly protected nodes in a binary search tree.

In this note, we study the number of weakly protected nodes in random binary search trees. Recently, the
number of weakly protected nodes have only been studied for ordered trees in [10].

2. The expectation and variance

We denote the number of weakly protected nodes in a random binary search tree of size n by Xn. We
denote the sizes of the left subtree and right subtree of the root by Un and n − 1 − Un, respectively. In view
of the probability distribution on binary search trees, Un and n− 1− Un have uniform distribution on the set
{0, 1, . . . , n− 1}.
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distribution.
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Figure 1. A binary search tree built from the keys (5, 2, 6, 1, 8, 7, 4, 9, 3) where gray nodes
are: (a) Protected nodes; (b) Weakly protected nodes.

Let the notation
d
= indicate the equality in distribution. For n ≥ 3, we have a distributional recurrence for

Xn, i.e,

Xn
d
= XUn

+Xn−1−Un + 1− δn,311{Un=1}, (2.1)

where 11A is the indicator function of A, δi,j is Kronecker delta, Xn
d
= Xn, and Xn, Xn and Un are independent.

Moreover, Xn = 0 for n = 0, 1, 2.

Theorem 2.1. Let Xn denote the number of weakly protected nodes in a random binary search tree of size n.
Then

E(Xn) =
7n− 8

15
, for n ≥ 4, (2.2)

Var(Xn) =
211

3150
(n+ 1), for n ≥ 10, (2.3)

with E(Xn) = 0 for n = 0, 1, 2 and E(X3) = 2
3 . Moreover,

Var(Xn) = 0, n = 0, 1, 2, Var(X3) =
2

9
,

Var(X4) =
2

9
, Var(X5) =

32

75
, Var(X6) =

38

75
,

Var(X7) =
286

525
, Var(X8) =

211

350
, Var(X9) =

211

315
.

Proof. Taking expectation of (2.1), for n ≥ 3, we obtain

E(Xn) = E(XUn
) + E(Xn−1−Un

) + 1− δn,3
n
. (2.4)

By conditioning on Un, the equation (2.4) gives

nE(Xn) = 2

n−1∑
j=0

E(Xj) + n− δn,3. (2.5)
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We subtract from the equation (2.5) a version of itself with n replaced by n− 1 and unwind the recurrence: for
n ≥ 4,

E(Xn) =
n+ 1

n
E(Xn−1) +

1 + δn−1,3
n

...

=
n+ 1

4
E(X3) +

n−1∑
j=3

(n+ 1)(1 + δj,3)

(j + 1)(j + 2)

=
4(n+ 1)

15
− 1

n+ 2
+

n+1∑
j=5

n+ 1

j
−

n+1∑
j=5

n+ 1

j + 1
.

By simplifying this we get (2.2). Similarly, by (2.1) and (2.2), we have, for n ≥ 9,

E(X2
n) =

2

n

n−1∑
j=0

E(X2
j ) +

4

n

n−1∑
j=4

E(Xj) +
4

n
E(X3) + 1

+
2

n

n−5∑
j=4

E(Xj)E(Xn−1−j) +
4

n
E(X3)E(Xn−4)

=
2

n

n−1∑
j=0

E(X2
j ) +

4

n

n−1∑
j=4

7j − 8

15
+

8

3n
+ 1

+
2

n

n−5∑
j=4

7j − 8

15
· 7(n− 1− j)− 8

15
+

8

3n
· 7(n− 4)− 8

15

=
2

n

n−1∑
j=0

E(X2
j ) +

49

675
n2 +

49

225
n− 577

675
+

112

45n
.

By the last equation, for n ≥ 10, it follows that

nE(X2
n)− (n− 1)E(X2

n−1)

= 2E(X2
n−1) +

49

225
n2 +

49

225
n− 1.

Therefore, for n ≥ 10, we obtain

E(X2
n) =

n+ 1

n
E(X2

n−1) +
1

n

( 49

225
n2 +

49

225
n− 1

)
...

=
n+ 1

10
E(X2

9 ) +

n∑
j=10

n+ 1

j(j + 1)

( 49

225
j2 +

49

225
j − 1

)
=

49

225
n2 − 1357

3150
n+

123

350
(2.6)

with E(X2
3 ) = 2

3 , E(X2
4 ) = 2, E(X2

5 ) = 11
3 , E(X2

6 ) = 254
45 , E(X2

7 ) = 505
63 , E(X2

8 ) = 759
70 and E(X2

9 ) = 494
35 .
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Finally, applying (2.6) and Var(Xn) = E(X2
n)−

(
E(Xn)

)2
, the assertion in (2.3) follows.

3. Limiting distribution

In this section, we begin to prove the normality of limiting distribution of Xn. The proof was completed by
applying the contraction method, which was first introduced by [9], in studying the Quicksort algorithm.

Here, we prefer the Zolotarev metric ζ3 (see [8]) as the metric space applied in the contraction method. Let
the distribution of a random variable X denoted by L(X). Then, for any given random variables X and Y , the
3rd order Zolotarev metric between X and Y is defined as

ζ3(X,Y ) = ζ3(L(X),L(Y ))

:= sup{|E[f(X)]− E[f(Y )]| : f ∈ F}

where F = {f : f ∈ C(2), |f (2)(x)− f (2)(y)| ≤ |x− y|} denotes the set of all twice differentiable functions, where
the second derivative is Lipschitz continuous with Lipschitz constant equal to 1.

The following lemma gives several properties of probability metric ζ3(X,Y ), which are quite useful in our
proof of Theorem 3.5.

Lemma 3.1 (see [8]). Let ζ3(X,Y ) be the 3rd order Zolotarev metric between the random variables X and Y .
Then,

(i) For any real number c > 0,

ζ3(cX, cY ) = c3ζ3(X,Y ); (3.1)

(ii) If the random variables Y and (X1, X2) are independent mutually, then

ζ3(X1 + Y,X2 + Y ) ≤ ζ3(X1, X2); (3.2)

(iii) For any random variables X and Y ,

E(|X|3) + E(|Y |3) <∞, E(Xk) = E(Y k), k = 1, 2

⇐⇒ ζ3(X,Y ) <∞ (3.3)

(iv) For the random variables V and {Vn}n≥1, as n→∞

ζ3(Vn, V )→ 0 =⇒ Vn
D−→ V, (3.4)

where the notation
D−→ denotes the convergence in distribution.

Lemma 3.2 (see [7]). let X1, X2, T1 and T2 be random variables such that the pairs (X1 + T1, X2 + T2) and
(X1, X2) satisfies (3.3). Then

ζ3(X1 + T1, X2 + T2) ≤ ζ3(X1, X2)

+

2∑
i=1

{‖Xi‖23‖Ti‖3
2

+
‖Xi‖3‖Ti‖23

2
+
‖Ti‖33

6

}
,

where ‖X‖3 := E(|X|3)1/3 for a random variable X.
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Moreover, the proof of Theorem 3.5 requires the following upper bound for metric ζ3:

ζ3(X,Y ) ≤ 1

2

(
‖X‖23 + ‖X‖3‖Y ‖3 + ‖Y ‖23

)
`3(X,Y ), (3.5)

where the minimal L3-metric `3 defined by

`3(X,Y ) := `3(L(X),L(Y ))

:= inf{‖X ′ − Y ′‖3 : X
d
= X ′, Y

d
= Y ′},

for random variables X and Y with ‖X‖3 <∞, ‖Y ‖3 <∞.
We standardize Xn with its mean and variance, i.e.,

Yn :=
Xn − E(Xn)

σ(n)
, σ2(n) := Var(Xn)

Let denote a quantity

Yn
d
=
σ(Un)

σ(n)
YUn

+
σ(n− 1− Un)

σ(n)
Y n−1−Un

, n ≥ 4.

where Yi
d
= Y i, for 0 ≤ i ≤ n− 1. The random variables Yi, Y i, Un, 0 ≤ i ≤ n− 1, are independent. To prove

the Theorem 3.5, we still require some more arrangements. The following three lemmas are necessary.

Lemma 3.3. Let W , W1 and W2 be independent standard normal random variables. Then we have

W
d
=

√
Un + 1

n+ 1
W1 +

√
n− Un

n+ 1
W2, (3.6)

where Un is a random variable with uniform distribution on the set {0, 1, . . . , n− 1}.

Proof. It is sufficient to verify that the characteristic function of the right side of (3.6) is the same as that of a
standard normal random variable. From the independence of the random variables W , W1, W2, Un, we have

E
[

exp

{
it

(√
Un + 1

n+ 1
W1 +

√
n− Un

n+ 1
W2

)}]
=

n−1∑
j=0

1

n
E
[

exp
{
it
(√ j + 1

n+ 1
W1 +

√
n− j
n+ 1

W2

)}]

=

n−1∑
j=0

1

n
E
[

exp
{
itW1

√
j + 1

n+ 1

}]
E
[

exp
{
itW2

√
n− j
n+ 1

}]

=

n−1∑
j=0

1

n
exp

(
− j + 1

n+ 1
· t

2

2

)
exp

(
− n− j
n+ 1

· t
2

2

)
= e−

t2

2

where, the function e−
t2

2 is the characteristic function of a standard normal random variable. Hence we obtain
the claim.

Lemma 3.4. As n→∞, E[|Y 3
n |] = O(1).
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Proof. By Lyapunov’s inequality, E[|Yn|] ≤
√
E[|Yn|2] = 1. Let ξn := 1 ∨max0≤j≤n E[|Y 3

j |] and U be a uniform
random variable on (0, 1). Then from (2.1) we obtain

E[|Y 3
n |] ≤ 2

n−1∑
j=0

1

n

( σ(j)

σ(n)

)3
E
[∣∣Yj∣∣3]+O(1)

≤
(

2E
(
U

3
2

)
+ o(1)

)
ξn−1 +O(1) (3.7)

≤
(
0.8 + o(1)

)
ξn−1 +O(1).

Hence, there exist an n0 ∈ N and a constant 0 < α <∞ such that for n ≥ n0

E[|Y 3
n |] ≤ 0.9ξn−1 + α.

By induction, we have E[|Y 3
n |] ≤ ξn0

∨ (10α) for all n ≥ 0. This implies the claim.

In the following, we begin to prove the asymptotic normality distribution for Xn.

Theorem 3.5. Let Xn denote the number of weakly protected nodes in a random binary search tree of size n.
Then,

Xn − 7
15n√
n

D−→ N
(

0,
211

3150

)
, as n→∞,

where N (µ, σ2) denotes a normal random variable with mean µ and variance σ2.

Proof. By (3.4), we just need to show that the Zolotarev metric between the random variables Yn and N , a
standard normal random variable, approaches 0, as n → ∞. For W1 and W2 independent standard normal
random variables, also independent of Un, we set

Θn :=
σ(Un)

σ(n)
W1 +

σ(n− 1− Un)

σ(n)
W2, n ≥ 4.

Note that Var(Θn) > 0 for all n ≥ n0, and Var(Θn)→ 1 as n→∞. Hence there exists a deterministic sequence
(δn)n≥n0

with δn → 0 as n→∞ such that Var
(
(1 + δn)Θn

)
= 1 for all n ≥ 4. So, by Lemma 3.4, each pair from

the random variables Yn, (1 + δn)Θn and N satisfies (3.3). Thus we obtain

ζ3(Yn, N) ≤ ζ3
(
Yn, (1 + δn)Θn

)
+ ζ3

(
(1 + δn)Θn, N

)
.

Now Lemma 3.2 yields

ζ3
(
Yn, (1 + δn)Θn

)
≤ ζ3

(
Yn,Θn

)
+ o(1).

Using the bound (3.5) and Lemma 3.3, for some finite constant M > 0, we obtain

ζ3
(
(1 + δn)Θn, N

)
≤M`3

(
(1 + δn)Θn, N

)
≤M

∥∥∥∥((1 + δn)
σ(Un)

σ(n)
−
√
Un + 1

n+ 1

)
W1

+

(
(1 + δn)

σ(n− 1− Un)

σ(n)
−
√
n− Un

n

)
W2

∥∥∥∥
3

→ 0.
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From (3.1) and (3.2), we can conclude that

ζ3(Yn,N) ≤
(
Yn,Θn

)
+ o(1)

≤ ζ3
(σ(Un)

σ(n)
YUn

+
σ(n− 1− Un)

σ(n)
Y n−1−Un ,

σ(Un)

σ(n)
W1 +

σ(n− 1− Un)

σ(n)
W2

)
+ o(1)

≤
n−1∑
j=0

1

n
ζ3

( σ(j)

σ(n)
Yj +

σ(n− 1− j)
σ(n)

Y n−1−j ,

σ(j)

σ(n)
W1 +

σ(n− 1− j)
σ(n)

W2

)
+ o(1)

= 2

n−1∑
j=0

1

n

( σ(j)

σ(n)

)3
ζ3
(
Yj , N

)
+ o(1)

= 2E
[(σ(Un)

σ(n)

)3
ζ3
(
YUn

, N
)]

+ o(1) (3.8)

≤
(

2E
(
U

3
2

)
+ o(1)

)
sup

0≤j≤n−1
ζ3(Yj , N) + o(1).

This implies, similarly to the inequality (3.7),
(
ζ3(Yn, N)

)
n≥0 that is bounded. We denote ξ := supn≥0 ζ3(Yn, N)

and s := lim supn→∞ ζ3(Yn, N) ≥ 0. For any ε > 0 there exists an n1 ≥ 4 such that ζ3(Yn, N) ≤ s + ε for all
n ≥ n1. Hence, from (3.8) we obtain

ζ3(Yn,N) ≤ 2E
[
11{Un≤n1}

(σ(Un)

σ(n)

)3]
ξ

+ 2E
[
11{Un>n1}

(σ(Un)

σ(n)

)3]
(s+ ε) + o(1)

∼ 2E
[
11{Un>n1}

(σ(Un)

σ(n)

)3]
(s+ ε) + o(1).

So 0 ≤ s = lim supn→∞ ζ3(Yn, N) ≤ 0.8(s+ ε) < s+ ε. Since ε > 0 is arbitrary then we have s = 0. Therefore,
by (3.4), the assertion holds.

References
[1] M. Bona, k-protected nodes in binary search trees. Adv. Appl. Math. 53 (2014) 1–11.

[2] L. Devroye and S. Janson, Protected nodes and fringe subtrees in some random trees. Electr. Commun. Probab. 19 (2014)
1–10.

[3] C. Holmgren and S. Janson, Asymptotic distribution of two-protected nodes in ternary search trees. Electr. J. Probab. 20
(2015) 1–20.

[4] C. Holmgren and S. Janson, Limit laws for functions of fringe trees for binary search trees and recursive trees. Electr. J.
Probab. 20 (2015) 1–51.

[5] H.M. Mahmoud, Evolution of random search trees. John Wiley & Sons Inc., New York (1992).

[6] H.M. Mahmoud and M.D. Ward, Asymptotic distribution of two-protected nodes in random binary search trees. Appl. Math.
Lett. 25 (2012) 2218–2222.

[7] R. Neininger, Refined quicksort asymptotics. Random Struct. Algor. 46 (2015) 346–361.
[8] S. Rachev, Probability Metrics and the Stability of Stochastic Models. New York (1991).



8 E.M. NEZHAD ET AL.

[9] U. Roesler, A limit theorem for “Quicksort”. RAIRO: ITA 25 (1991) 85–100.

[10] L. Yang and S.L. Yang, Weakly protected points in ordered trees. Graphs Combinat. (2021) https://doi.org/10.1007/
s00373-021-02278-w.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability
of research articles combined with the rights to use these articles fully in the digital environment. We are thankful to
our subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at:
https://www.edpsciences.org/en/maths-s2o-programme

https://doi.org/10.1007/s00373-021-02278-w
https://doi.org/10.1007/s00373-021-02278-w
mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme

	Weakly protected nodes in random binary search trees*-2pt
	1 Definitions
	2 The expectation and variance
	3 Limiting distribution

	References

