The algebraic counterpart of the Wagner hierarchy consists of a well-founded and decidable classification of finite pointed -semigroups of width and height . This paper completes the description of this algebraic hierarchy. We first give a purely algebraic decidability procedure of this partial ordering by introducing a graph representation of finite pointed -semigroups allowing to compute their precise Wagner degrees. The Wagner degree of any -rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed -semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every degree of this hierarchy.
Keywords: $\omega $-automata, $\omega $-rational languages, $\omega $-semigroups, infinite games, hierarchical games, Wadge game, Wadge hierarchy, Wagner hierarchy
@article{ITA_2009__43_3_463_0,
author = {Cabessa, J\'er\'emie and Duparc, Jacques},
title = {A game theoretical approach to the algebraic counterpart of the {Wagner} hierarchy : part {II}},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {463--515},
publisher = {EDP Sciences},
volume = {43},
number = {3},
year = {2009},
doi = {10.1051/ita/2009007},
mrnumber = {2541208},
zbl = {1175.03022},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2009007/}
}
TY - JOUR AU - Cabessa, Jérémie AU - Duparc, Jacques TI - A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part II JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 463 EP - 515 VL - 43 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita/2009007/ DO - 10.1051/ita/2009007 LA - en ID - ITA_2009__43_3_463_0 ER -
%0 Journal Article %A Cabessa, Jérémie %A Duparc, Jacques %T A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part II %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 463-515 %V 43 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita/2009007/ %R 10.1051/ita/2009007 %G en %F ITA_2009__43_3_463_0
Cabessa, Jérémie; Duparc, Jacques. A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part II. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 43 (2009) no. 3, pp. 463-515. doi: 10.1051/ita/2009007
[1] and , An infinite game over -semigroups, in Foundations of the Formal Sciences V, Infinite Games, edited by S. Bold, B. Löwe, T. Räsch, J. van Benthem. Studies in Logic 11. College Publications, London (2007) 63-78. | Zbl | MR
[2] and , Chains and superchains in -semigroups, edited by Almeida Jorge et al., Semigroups, automata and languages. Papers from the conference, Porto, Portugal (1994) June 20-24. World Scientific, Singapore (1996) 17-28. | Zbl | MR
[3] and , Chains and superchains for -rational sets, automata and semigroups. Int. J. Algebra Comput. 7 (1997) 673-695. | Zbl | MR
[4] and , The Wagner hierarchy. Int. J. Algebra Comput. 9 (1999) 597-620. | Zbl | MR
[5] , Wadge hierarchy and Veblen hierarchy. Part I: Borel sets of finite rank. J. Symbolic Logic 66 (2001) 56-86. | Zbl | MR
[6] , A hierarchy of deterministic context-free -languages. Theoret. Comput. Sci. 290 (2003) 1253-1300. | Zbl | MR
[7] , Wadge hierarchy and Veblen hierarchy. Part II: Borel sets of infinite rank (to appear). | Zbl
[8] and , The missing link for -rational sets, automata, and semigroups. Int. J. Algebra Comput. 16 (2006) 161-185. | Zbl
[9] , An effective extension of the Wagner hierarchy to blind counter automata. In Computer Science Logic (Paris, 2001); Lect. Notes Comput. Sci. 2142 (2001) 369-383. | Zbl
[10] , Borel ranks and Wadge degrees of context free omega languages. In New Computational Paradigms, First Conference on Computability in Europe, CiE. Lect. Notes Comput. Sci. 2142 (2005) 129-138. | Zbl
[11] , Classical descriptive set theory, Graduate Texts in Mathematics 156. Springer-Verlag, New York (1995). | Zbl
[12] , Set theory. An introduction to independence proofs. 2nd print. Studies in Logic and the Foundations of Mathematics 102. North-Holland (1983) 313. | Zbl
[13] , Application of model theoretic games to discrete linear orders and finite automata. Inform. Control 33 (1977) 281-303. | Zbl | MR
[14] , Descriptive set theory. Studies in Logic and the Foundations of Mathematics 100. North-Holland Publishing Company (1980) 637. | Zbl | MR
[15] and , First-order logic and star-free sets. J. Comput. System Sci. 32 (1986) 393-406. | Zbl | MR
[16] and , Infinite words. Pure Appl. Mathematics 141. Elsevier (2004). | Zbl
[17] , Varieties of formal languages. North Oxford, London and Plenum, New-York (1986). | Zbl | MR
[18] , Fine hierarchy of regular -languages. Theoret. Comput. Sci. 191 (1998) 37-59. | Zbl | MR
[19] , Star-free regular sets of -sequences. Inform. Control 42 (1979) 148-156. | Zbl | MR
[20] , Reducibility and determinateness on the Baire space. Ph.D. thesis, University of California, Berkeley (1983).
[21] , On -regular sets. Inform. Control 43 (1979) 123-177. | Zbl | MR
[22] , An Eilenberg theorem for -languages. In Automata, languages and programming (Madrid, 1991). Lect. Notes Comput. Sci. 510 (1991) 588-599. | Zbl | MR
[23] and , Computing the Wadge degree, the Lifshitz degree, and the Rabin index of a regular language of infinite words in polynomial time. In TAPSOFT '95: Theory and Practive of Software Development, edited by Peter D. Mosses, M. Nielsen, M.I. Schwartzbach. Lect. Notes Comput. Sci. 915 (1995) 288-302.
Cited by Sources:






