We consider a class of semilinear elliptic equations of the form
Keywords: heteroclinic solutions, elliptic equations, variational methods
@article{COCV_2005__11_4_633_0,
author = {Alessio, Francesca and Montecchiari, Piero},
title = {Entire solutions in $\mathbb {R}^{2}$ for a class of {Allen-Cahn} equations},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {633--672},
year = {2005},
publisher = {EDP Sciences},
volume = {11},
number = {4},
doi = {10.1051/cocv:2005023},
mrnumber = {2167878},
zbl = {1084.35020},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2005023/}
}
TY - JOUR
AU - Alessio, Francesca
AU - Montecchiari, Piero
TI - Entire solutions in $\mathbb {R}^{2}$ for a class of Allen-Cahn equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2005
SP - 633
EP - 672
VL - 11
IS - 4
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/cocv:2005023/
DO - 10.1051/cocv:2005023
LA - en
ID - COCV_2005__11_4_633_0
ER -
%0 Journal Article
%A Alessio, Francesca
%A Montecchiari, Piero
%T Entire solutions in $\mathbb {R}^{2}$ for a class of Allen-Cahn equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 633-672
%V 11
%N 4
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/cocv:2005023/
%R 10.1051/cocv:2005023
%G en
%F COCV_2005__11_4_633_0
Alessio, Francesca; Montecchiari, Piero. Entire solutions in $\mathbb {R}^{2}$ for a class of Allen-Cahn equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 4, pp. 633-672. doi: 10.1051/cocv:2005023
[1] , and, Stationary layered solutions in for an Allen-Cahn system with multiple well potential. Calc. Var. 5 (1997) 359-390. | Zbl
[2] , and, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl. Math. 65 (2001) 9-33. | Zbl
[3] , and, Stationary layered solutions in for a class of non autonomous Allen-Cahn equations. Calc. Var. Partial Differ. Equ. 11 (2000) 177-202. | Zbl
[4] , and, Existence of infinitely many stationary layered solutions in for a class of periodic Allen Cahn Equations. Commun. Partial Differ. Equ. 27 (2002) 1537-1574. | Zbl
[5] and, Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi. J. Am. Math. Soc. 13 (2000) 725-739. | Zbl
[6] , On minimal laminations on the torus. Ann. Inst. H. Poincaré Anal. Nonlinéaire 6 (1989) 95-138. | Zbl | Numdam
[7] , and, The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math. 53 (2000) 1007-1038. | Zbl
[8] , and, One-dimensional symmetry for some bounded entire solutions of some elliptic equations. Duke Math. J. 103 (2000) 375-396. | Zbl
[9] , Convergence problems for functionals and operators, in Proc. Int. Meeting on Recent Methods in Nonlinear Analysis. Rome, E. De Giorgi et al. Eds. (1978). | Zbl
[10] , Symmetry for solutions of semilinear elliptic equations in and related conjectures. Ricerche Mat. (in memory of Ennio De Giorgi) 48 (1999) 129-154. | Zbl
[11] and, On a conjecture of De Giorgi and some related problems. Math. Ann. 311 (1998) 481-491. | Zbl
[12] , Minimal solutions of variational problem on a torus. Ann. Inst. H. Poincaré Anal. NonLinéaire 3 (1986) 229-272. | Zbl | Numdam
[13] and, Mixed states for an Allen-Cahn type equation. Commun. Pure Appl. Math. 56 (2003) 1078-1134.
[14] and, Mixed states for an Allen-Cahn type equation, II. Calc. Var. Partial Differ. Equ. 21 (2004) 157-207.
[15] , Heteroclinic for reversible Hamiltonian system. Ergod. Th. Dyn. Sys. 14 (1994) 817-829. | Zbl
[16] , Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations. J. Math. Sci. Univ. Tokio 1 (1994) 525-550. | Zbl
Cité par Sources :





