@article{AIHPC_1989__6_2_95_0,
author = {Bangert, V.},
title = {On minimal laminations of the torus},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {95--138},
year = {1989},
publisher = {Gauthier-Villars},
volume = {6},
number = {2},
mrnumber = {991874},
zbl = {0678.58014},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1989__6_2_95_0/}
}
Bangert, V. On minimal laminations of the torus. Annales de l'I.H.P. Analyse non linéaire, Tome 6 (1989) no. 2, pp. 95-138. https://www.numdam.org/item/AIHPC_1989__6_2_95_0/
[1] and , The discrete Frenkel-Kontorova Model and Its Extensions I. Exact Results for the Ground States, Physica, 8 D, 1983, pp. 381-422. | MR
[2] , Mather Sets for Twist Maps and Geodesics on Tori, Dynamics Reported, Vol. 1, U. KIRCHGRABER and H. O. WALTHER éds., pp. 1-56. Stuttgart-Chichester, B. G. Teubner-John Wiley, 1988. | Zbl | MR
[3] , A Uniqueness Theorem for Zr-periodic Variational Problems, Comment. Math. Helv., Vol. 62, 1987, pp. 511-531. | Zbl | MR
[4] , The Existence of Gaps in Minimal Foliations. Aequationes Math., Vol. 34, 1987, pp. 153-166. | Zbl | MR
[5] , Dynamical Systems, Amer. Math. Soc. Colloq. Publ., Vol.IX, New York, Amer. Math. Soc., 1927. | JFM
[6] , Mather Sets for Plane Hamiltonian Systems, Z. Angew. Math. Phys. (ZAMP), Vol. 38, 1987, pp. 791-812. | Zbl | MR
[7] , Geodesies on a Two-dimensional Riemannian Manifold with Periodic Coefficients, Ann. of Math., Vol. 33, 1932, pp. 719-739. | Zbl | MR
[8] and , Linear and Quasilinear Elliptic Equations, New York-London, Academic Press, 1968. | Zbl | MR
[9] , Existence of quasi-periodic Orbits for Twist Homeomorphisms of the Annulus, Topology, Vol. 21, 1982, pp. 457-467. | Zbl | MR
[10] , More Denjoy Minimal Sets for Area Preserving Diffeomorphisms, Comment. Math. Helv., Vol. 60, 1985, pp. 508-557. | Zbl | MR
[11] , A Fundamental Class of Geodesies on Any Closed Surface of Genus Greater than One, Trans. Amer. Math. Soc., Vol. 26, 1924, pp. 25-60. | MR | JFM
[12] , Minimal Solutions of Variational Problems on a Torus, Ann. Inst. Henri-Poincaré (Analyse non linéaire), Vol. 3, 1986, pp. 229-272. | Zbl | MR | Numdam
[13] , A Stability Theorem for Minimal Foliations on a Torus, Ergod. Th. Dynam. Sys., Vol. 8, 1988, pp. 251-281. | Zbl | MR
[14] , Three Dimensional Manifolds, Kleinian Groups and Hyperbolic Geometry, Bull. (N.S.) Amer. Math. Soc., Vol. 6, 1982, pp. 357-381. | Zbl | MR





