Feedback Stabilization of Tank-Liquid System with Robustness to Wall Friction
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 81

We solve the feedback stabilization problem for a tank, with friction, containing a liquid modeled by the viscous Saint-Venant system of Partial Differential Equations. A spill-free exponential stabilization is achieved, with robustness to the wall friction forces. A Control Lyapunov Functional (CLF) methodology with two different Lyapunov functionals is employed. These functionals determine specific parameterized sets which approximate the state space. The feedback law is designed based only on one of the two functionals (which is the CLF) while the other functional is used for the derivation of estimates of the sup-norm of the velocity. The feedback law does not require the knowledge of the exact relation of the friction coefficient. Two main results are provided: the first deals with the special case of a velocity-independent friction coefficient, while the second deals with the general case. The obtained results are new even in the frictionless case.

DOI : 10.1051/cocv/2022076
Classification : 35K10, 93D20, 93C20
Keywords: Saint-Venant model, shallow water equations, feedback stabilization, Control Lyapunov Functional, PDEs
@article{COCV_2022__28_1_A81_0,
     author = {Karafyllis, Iasson and Vokos, Filippos and Krstic, Miroslav},
     title = {Feedback {Stabilization} of {Tank-Liquid} {System} with {Robustness} to {Wall} {Friction}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022076},
     mrnumber = {4525178},
     zbl = {1506.35163},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022076/}
}
TY  - JOUR
AU  - Karafyllis, Iasson
AU  - Vokos, Filippos
AU  - Krstic, Miroslav
TI  - Feedback Stabilization of Tank-Liquid System with Robustness to Wall Friction
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022076/
DO  - 10.1051/cocv/2022076
LA  - en
ID  - COCV_2022__28_1_A81_0
ER  - 
%0 Journal Article
%A Karafyllis, Iasson
%A Vokos, Filippos
%A Krstic, Miroslav
%T Feedback Stabilization of Tank-Liquid System with Robustness to Wall Friction
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022076/
%R 10.1051/cocv/2022076
%G en
%F COCV_2022__28_1_A81_0
Karafyllis, Iasson; Vokos, Filippos; Krstic, Miroslav. Feedback Stabilization of Tank-Liquid System with Robustness to Wall Friction. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 81. doi: 10.1051/cocv/2022076

[1] A. J. C. Barré De Saint-Venant, Théorie du Mouvement non Permanent des Eaux, avec Application aux Crues des Rivières et a l’introduction de Marees dans Leurs Lits. Compt. Rend. l’Académie Sci. 73 (1871) 147-154 and 237-240. | JFM

[2] G. Bastin, J.-M. Coron and B. D’Andréa Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw. Heterogeneous Media 4 (2009) 177-187. | MR | Zbl | DOI

[3] G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Birkhäuser (2016). | MR | Zbl | DOI

[4] G. Bastin, J.-M. Coron and A. Hayat, Feedforward boundary control of 2 × 2 nonlinear hyperbolic systems with application to Saint-Venant equations. Eur. J. Control 57 (2021) 41-53. | MR | Zbl | DOI

[5] D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models. J. Mathématiques Pures Appi. 86 (2006) 362-368. | MR | Zbl | DOI

[6] D. Bresch and P. Noble, Mathematical justification of a shallow water model. Methods Appi. Anal. 14 (2007) 87-118. | MR | Zbl | DOI

[7] S. A. Chin-Bing, P. M. Jordan and A. Warn-Varnas, A note on the viscous, 1D shallow water equations: traveling wave phenomena. Mech. Res. Commun. 38 (2011) 382-387. | Zbl | DOI

[8] J. M. Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations. ESAIM: COCV 8 (2002) 513-554. | MR | Zbl | Numdam

[9] J.-M. Coron, Control and Nonlinearity. Mathematical Surveys and Monographs, Volume 136 American Mathematical Society (2007). | MR | Zbl

[10] J.-M. Coron, B. D’Andréa Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Autom. Control 52 (2007) 2-11. | MR | Zbl | DOI

[11] J.-M. Coron, A. Hayat, S. Xiang and C. Zhang, Stabilization of the linearized water tank system. Arch. Ratl. Mech. Anal. 244 (2022) 1019-1097. | MR | Zbl | DOI

[12] J. De Halleux and G. Bastin, Stabilization of Saint-Venant equations using riemann invariants: application to waterways with mobile spillways. IFAC Proc. 35 (2002) 131-136. | DOI

[13] A. Diagne, M. Diagne, S. Tang and M. Krstic, Backstepping stabilization of the linearized Saint-Venant-Exner model. Automatica 76 (2017) 345-354. | MR | Zbl | DOI

[14] M. Diagne, S.-X. Tang, A. Diagne and M. Krstic, Control of shallow waves of two unmixed fluids by backstepping. Annu. Rev. Control 44 (2017) 211-225. | DOI

[15] V. Dos Santos, G. Bastin, J.-M. Coron and B. D’Andréa-Novel, Boundary control with integral action for hyperbolic systems of conservation laws: stability and experiments. Automatica 44 (2008) 1310-1318. | MR | Zbl | DOI

[16] F. Dubois, N. Petit and P. Rouchon, Motion planning and nonlinear simulations for a tank containing a fluid. Proceedings of the 1999 European Control Conference (ECC) (1999) 3232-3237. | DOI

[17] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow-water: numerical validation. Discr. Continu. Dyn. Syst. Ser. B 1 (2001) 89-102. | MR | Zbl

[18] A. Hayat and P. Shang, A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope. Automatica 100 (2019) 2-60. | MR | Zbl | DOI

[19] A. Hayat and P. Shang, Exponential stability of density-velocity systems with boundary conditions and source term for the H 2 norm. J. Math. Pures Appl. 153 (2021) 187-212. | MR | Zbl | DOI

[20] I. Karafyllis and M. Krstic, Global stabilization of a class of nonlinear reaction-diffusion PDEs by boundary feedback. SIAM J. Control Optim. 57 (2019) 3723-3748. | MR | Zbl | DOI

[21] I. Karafyllis and M. Krstic, Global stabilization of compressible flow between two moving pistons. SIAM J. Control Optim. 60 (2022) 1117-1142. | MR | Zbl | DOI

[22] I. Karafyllis and M. Krstic, Spill-free transfer and stabilization of viscous liquid. IEEE Trans. Autom. Control 67 (2022) 4585-4597. | MR | Zbl | DOI

[23] I. Karafyllis, F. Vokos and M. Krstic, Output-feedback control of viscous liquid-tank system and its numerical approximation. To appear in Automatica (see also [math.OC]). | arXiv | MR | Zbl

[24] P. E. Kloeden, Global existence of classical solutions in the dissipative shallow water equations. SIAM J. Math. Anal. 16 (1985) 301-315. | MR | Zbl | DOI

[25] D. Lannes, The Water Waves Problem. Mathematical Analysis and Asymptotics. American Mathematical Society (2013). | MR | Zbl

[26] X. Litrico and V. Fromion, Boundary control of linearized Saint-Venant equations oscillating modes. Automatica 42 (2006) 967-972. | MR | Zbl | DOI

[27] C. Mascia and F. Rousset, Asymptotic stability of steady-states for Saint-Venant equations with real viscosity. in C. Calgaro, J.-F. Coulombel and T. Goudon (Eds), Analysis and Simulation of Fluid Dynamics. Advances in Mathematical Fluid Mechanics Birkhäuser (2006) 155-162. | MR | Zbl

[28] N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems. IEEE Trans. Autom. Control 47 (2002) 594-609. | MR | Zbl | DOI

[29] C. Prieur and J. De Halleux, Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations. Syst. Control Lett. 52 (2004) 167-178. | MR | Zbl | DOI

[30] I. H. Shames, Mechanics of Fluids 2$$ Edition McGraw-Hill International Editions (1989).

[31] L. Sundbye, Global existence for the Dirichlet problem for the viscous shallow water equations. J. Math. Anal. Appl. 202 (1996) 236-258. | MR | Zbl | DOI

[32] R. Vazquez and M. Krstic, Control of Turbulent and Magnetohydrodynamic Channel Flows. Birkhauser (2007). | MR

Cité par Sources :