Optimality Conditions and Moreau–Yosida Regularization for Almost Sure State Constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 80

We analyze a potentially risk-averse convex stochastic optimization problem, where the control is deterministic and the state is a Banach-valued essentially bounded random variable. We obtain strong forms of necessary and sufficient optimality conditions for problems subject to equality and conical constraints. We propose a Moreau-Yosida regularization for the conical constraint and show consistency of the optimality conditions for the regularized problem as the regularization parameter is taken to infinity.

DOI : 10.1051/cocv/2022070
Classification : 49K20, 49K45, 49N15, 49J20, 90C15
Keywords: Optimization in Banach spaces, optimality conditions, regularization, convex stochastic optimization in Banach spaces, two-stage stochastic optimization, duality, PDE-constrained optimization under uncertainty
@article{COCV_2022__28_1_A80_0,
     author = {Geiersbach, Caroline and Hinterm\"uller, Michael},
     title = {Optimality {Conditions} and {Moreau{\textendash}Yosida} {Regularization} for {Almost} {Sure} {State} {Constraints}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022070},
     mrnumber = {4525175},
     zbl = {1509.49015},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022070/}
}
TY  - JOUR
AU  - Geiersbach, Caroline
AU  - Hintermüller, Michael
TI  - Optimality Conditions and Moreau–Yosida Regularization for Almost Sure State Constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022070/
DO  - 10.1051/cocv/2022070
LA  - en
ID  - COCV_2022__28_1_A80_0
ER  - 
%0 Journal Article
%A Geiersbach, Caroline
%A Hintermüller, Michael
%T Optimality Conditions and Moreau–Yosida Regularization for Almost Sure State Constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022070/
%R 10.1051/cocv/2022070
%G en
%F COCV_2022__28_1_A80_0
Geiersbach, Caroline; Hintermüller, Michael. Optimality Conditions and Moreau–Yosida Regularization for Almost Sure State Constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 80. doi: 10.1051/cocv/2022070

[1] R. Adams and J. Fournier, Sobolev Spaces, vol. 140. Elsevier (2003). | MR | Zbl

[2] A. Alexanderian, N. Petra, G. Stadler and O. Ghattas, Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations. SIAM/ASA J. Uncertainty Quantif. 5 (2017) 1166-1192. | MR | Zbl | DOI

[3] J. Appell and P. P. Zabrejko, Vol. 95 of Nonlinear superposition operators. Cambridge University Press (1990). | MR | Zbl

[4] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk. Math. Finance 9 (1999) 203-228. | MR | Zbl | DOI

[5] J.-P. Aubin and H. Frankowska, Set-valued analysis. Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA (1990). | MR | Zbl

[6] J. M. Ball and F. Murat, Remarks on Chacon’s biting lemma. Proc. Am. Math. Soc. 107 (1989) 655-663. | MR | Zbl

[7] H. H. Bauschke, P. L. Combettes et al., Vol. 408 of Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer (2011). | MR | Zbl

[8] P. Benner, A. Onwunta and M. Stoll, Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs. SIAM J. Matrix Anal. Appi. 37 (2016) 491-518. | MR | Zbl | DOI

[9] M. Bergounioux and F. Troltzsch, Optimal control of linear bottleneck problems. ESAIM: COCV 3 (1998) 235-250. | MR | Zbl | Numdam

[10] J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer-Verlag, New York (2013). | MR | Zbl

[11] E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24 (1986) 1309-1318. | MR | Zbl | DOI

[12] P. Chen and O. Ghattas, Taylor approximation for chance constrained optimization problems governed by partial differential equations with high-dimensional random parameters. SIAM/ASA J. Uncert. Quantif. 9 (2021) 1381-1410. | MR | Zbl | DOI

[13] P. Chen, A. Quarteroni and G. Rozza, A weighted reduced basis method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 51 (2013) 3163-3185. | MR | Zbl | DOI

[14] S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Shape optimization under uncertainty-a stochastic programming perspective. SIAM J. Optim. 19 (2008) 1610-1632. | MR | Zbl | DOI

[15] D. Dentcheva and A. Ruszczynski, Subregular recourse in nonlinear multistage stochastic optimization. Math. Program. (2021) 1-22. | MR | Zbl

[16] Y. Ermoliev, T. Ermolieva, T. Kahil, M. Obersteiner, V. Gorbachuk and P. Knopov, Stochastic optimization models for risk-based reservoir management. Cybern. Syst. Anal. 55 (2019) 55-64. | MR | Zbl | DOI

[17] M. H. Farshbaf-Shaker, R. Henrion and D. Hömberg, Properties of chance constraints in infinite dimensions with an application to PDE constrained optimization. Set-Valued Variat. Anal. 26 (2018) 821-841. | MR | Zbl | DOI

[18] D. Filipović and G. Svindland, The canonical model space for law-invariant convex risk measures is L 1 . Math. Finance 22 (2012) 585-589. | MR | Zbl | DOI

[19] D. B. Gahururu, M. Hintermüller and T. M. Surowiec, Risk-neutral PDE-constrained generalized Nash equilibrium problems. Math. Program. (2022) 1-51. | MR | Zbl

[20] C. Geiersbach and W. Wollner, A stochastic gradient method with mesh refinement for PDE-constrained optimization under uncertainty. SIAM J. Scient. Comput. 42 (2020) A2750-A2772. | MR | Zbl | DOI

[21] C. Geiersbach and W. Wollner, Optimality conditions for convex stochastic optimization problems in banach spaces with almost sure state constraints. SIAM J. Optim. 4 (2021) 2455-2480. | MR | Zbl | DOI

[22] A. Geletu, A. Hoffmann, P. Schmidt and P. Li, Chance constrained optimization of elliptic PDE systems with a smoothing convex approximation. ESAIM: COCV 26 (2020) 70. | MR | Zbl | Numdam

[23] M. Hintermuäller and K. Kunisch, Feasible and noninterior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45 (2006) 1198-1221. | MR | Zbl | DOI

[24] M. Hintermuäller and K. Kunisch, Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17 (2006) 159-187. | MR | Zbl | DOI

[25] A. D. Ioffe and V. L. Levin, Subdifferentials of convex functions. Trudy Moskovskogo Matematicheskogo Obshchestva 26 (1972) 3-73. | MR | Zbl

[26] P. Kolvenbach, O. Lass and S. Ulbrich, An approach for robust PDE-constrained optimization with application to shape optimization of electrical engines and of dynamic elastic structures under uncertainty. Optim. Eng. 19 (2018) 697-731. | MR | Zbl | DOI

[27] D. P. Kouri, M. Heinkenschloss, D. Ridzal and B. G. Van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM J. Sci. Comput. 35 (2013) A1847-A1879. | MR | Zbl | DOI

[28] D. P. Kouri and T. M. Surowiec, Risk-averse PDE-constrained optimization using the conditional value-at-risk. SIAM J. Optim. 26 (2016) 365-396. | MR | Zbl | DOI

[29] D. P. Kouri and T. M. Surowiec, Existence and optimality conditions for risk-averse PDE-constrained optimization. SIAM/ASA J. Uncertainty Quant. 6 (2018) 787-815. | MR | Zbl | DOI

[30] V. L. Levin, The Lebesgue decomposition for functionals on the vector-function space L X . Funct. Anal. Appi. 8 (1974) 314-317. | MR | Zbl | DOI

[31] J. M. Mulvey and B. Shetty, Financial planning via multi-stage stochastic optimization. Comput. Oper. Res. 31 (2004) 1-20. | MR | Zbl | DOI

[32] M. V. Pereira and L. M. Pinto, Multi-stage stochastic optimization applied to energy planning. Math. Program. 52 (1991) 359-375. | MR | Zbl | DOI

[33] G. Pflug and A. Pichler, Multistage Stochastic Optimization, Springer (2014). | MR | Zbl | DOI

[34] G. Pflug and W. Römisch, Modeling, Measuring and Managing Risk. World Scientific (2007). | MR | Zbl | DOI

[35] R. Rockafellar, Integrals which are convex functionals. II. Pacific J. Math. 39 (1971) 439-469. | MR | Zbl | DOI

[36] R. T. Rockafellar, Convex integral functionals and duality, in Contributions to nonlinear functional analysis. Elsevier (1971), pp. 215-236. | MR | Zbl

[37] R. T. Rockafellar, Conjugate duality and optimization. SIAM (1974). | DOI | MR | Zbl

[38] R. T. Rockafellar, Integral functionals, normal integrands and measurable selections, in Nonlinear operators and the calculus of variations. Springer (1976), pp. 157-207. | MR | Zbl

[39] R. T. Rockafellar and J. Royset, Engineering decisions under risk averseness. ASCE-ASME J. Risk Uncert. Eng. Syst. A 1 (2015) 04015003. | DOI

[40] R. T. Rockafellar and R. J.-B. Wets, Stochastic convex programming: Kuhn-Tucker conditions. J. Math. Econ. 2 (1975) 349-370. | MR | Zbl | DOI

[41] R. T. Rockafellar and R. J.-B. Wets, Stochastic convex programming: basic duality. Pacific J. Math. 62 (1976) 173-195. | MR | Zbl | DOI

[42] R. T. Rockafellar and R. J.-B. Wets, Stochastic convex programming: relatively complete recourse and induced feasibility. SIAM J. Control Optim. 14 (1976) 574-589. | MR | Zbl | DOI

[43] R. T. Rockafellar and R. J.-B. Wets, Stochastic convex programming: singular multipliers and extended duality singular multipliers and duality. Pacific J. Math. 62 (1976) 507-522. | MR | Zbl | DOI

[44] C. Schillings, S. Schmidt and V. Schulz, Efficient shape optimization for certain and uncertain aerodynamic design. Comput. Fluids 46 (2011) 78-87. | MR | Zbl | DOI

[45] A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009). | MR | Zbl | DOI

[46] J. J. Uhl, Extensions and decompositions of vector measures. J. London Math. Soc. 2 (1971) 672-676. | MR | Zbl | DOI

Cité par Sources :