Sub-Riemannian geodesics on SL(2,ℝ)
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 76

We explicitly describe the length minimizing geodesics for a sub-Riemannian structure of the elliptic type defined on SL(2, ℝ). Our method uses a symmetry reduction which translates the problem into a Riemannian problem on a two dimensional quotient space, on which projections of geodesics can be easily visualized. As a byproduct, we obtain an alternative derivation of the characterization of the cut-locus. We use classification results for three dimensional right invariant sub-Riemannian structures on Lie groups to identify exactly automorphic structures on which our results apply.

DOI : 10.1051/cocv/2022068
Classification : 54C17, 53C22, 57S20, 22E15
Keywords: Sub-Riemannian Geometry, Lie group $$(2,ℝ), symmetry reduction, optimal synthesis
@article{COCV_2022__28_1_A76_0,
     author = {D{\textquoteright}Alessandro, Domenico and Cho, Gunhee},
     title = {Sub-Riemannian geodesics on {\protect\emph{SL}(2,\ensuremath{\mathbb{R}})}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022068},
     mrnumber = {4524418},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022068/}
}
TY  - JOUR
AU  - D’Alessandro, Domenico
AU  - Cho, Gunhee
TI  - Sub-Riemannian geodesics on SL(2,ℝ)
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022068/
DO  - 10.1051/cocv/2022068
LA  - en
ID  - COCV_2022__28_1_A76_0
ER  - 
%0 Journal Article
%A D’Alessandro, Domenico
%A Cho, Gunhee
%T Sub-Riemannian geodesics on SL(2,ℝ)
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022068/
%R 10.1051/cocv/2022068
%G en
%F COCV_2022__28_1_A76_0
D’Alessandro, Domenico; Cho, Gunhee. Sub-Riemannian geodesics on SL(2,ℝ). ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 76. doi: 10.1051/cocv/2022068

[1] A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D Lie groups. J. Dyn. Control Syst. 18 (2012) 21–44. | MR | Zbl | DOI

[2] A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to sub-Riemannian Geometry. Cambridge University Press (2019). | MR | DOI

[3] A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences, 87. Springer-Verlag Berlin-Heidelberg (2004). | MR | Zbl

[4] F. Albertini and D. D’Alessandro, Time optimal simultaneous control of two level quantum systems. Automatica 74 (2016) 55–62. | MR | Zbl | DOI

[5] F. Albertini and D. D’Alessandro, On symmetries in time optimal control, sub-Riemannian geometries and the K P problem. J. Dyn. Control Syst. 24 (2018) 13–38. | MR | Zbl | DOI

[6] U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metric on S 3 , SO ( 3 ) , SL ( 2 ) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. | MR | Zbl | DOI

[7] V. N. Berestovskii and I. A. Zubareva, Sub-Riemannian distance in the Lie groups SU ( 2 ) and SO ( 3 ) , Siberian Adv. Math. 26 (2016) 77–89. | MR | Zbl | DOI

[8] V. N. Berestovskii and I. A. Zubareva, Sub-Riemannian distance on the Lie group SL ( 2 ) . Sibirsk. Mat. Zh 58 (2017) 16–27. | MR | Zbl | DOI

[9] I. Beschastnyi, Y. Sachkov, Geodesics in the sub-Riemannian problem on the group SO ( 3 ) . Sb. Math. 207 (2016) 915–941. | Zbl | MR | DOI

[10] R. Biggs, Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups. Commun. Math. 25 (2017) 99–135. | MR | Zbl

[11] F. Baudoin and G. Cho, The subelliptic heat kernel of the octonionic anti-de Sitter fibration. Symmetry Integrability Geom. Methods Appi. 17 (2021). | MR | Zbl

[12] F. Baudoin and G. Cho, The subelliptic heat kernel of the octonionic Hopf fibration. Potential Anal. 55 (2021) 211–228. | MR | Zbl | DOI

[13] G. E. Bredon, Introduction to Compact Transformation Groups. Academic Press, New York, London (1972) | MR | Zbl

[14] D.-C. Chang, I. Markina and A. Vasil’Ev, Sub-Lorentzian geometry on anti-de Sitter space. J. Math. Pures Appi. 90 (2008) 82–110. | MR | Zbl | DOI

[15] D. D’Alessandro and B. Sheller, On K-P sub-Riemannian problems and their cut locus, in Proceedings European Control Conference (2019). | Zbl

[16] S.G. Dani, Actions of automorphism groups of Lie groups. Handbook of group actions. Vol. IV, 529-562, Adv. Lect. Math. (ALM), 41, Int. Press, Somerville, MA (2018). | MR | Zbl

[17] J. Dieudonné, On the automorphisms of the classical groups. With a supplement by Loo-Keng Hua. Mem. Amer. Math. Soc. 2 (1951), vi+122 pp. | MR | Zbl

[18] M. P. Do Carmo, Riemannian Geometry, Mathematics: Theory and Applications, Birkhäuser Boston (1992). | MR | Zbl

[19] M. Grochowski, Connections on bundles of horizontal frames associated with contact sub-pseudo-Riemannian manifolds. J. Geom. Phys. 146 (2019) 103518. | MR | Zbl | DOI

[20] M. Grochowski and W. Krynéski, Invariants of contact sub-pseudo-Riemannian structures and Einstein-Weyl geometry. in Variational Methods in Imaging and Geometric Control, Radon Ser. Comput. Appl. Math., 18, De Gruyter, Berlin (2017) 434–453. | MR | Zbl

[21] K. Y. Ha and J. B. Lee, Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math. Nachr. 282 (2009) 868–898. | MR | Zbl | DOI

[22] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978). | MR | Zbl

[23] A. P. Mashtakov and Y. L. Sachkov, Integrability of left-invariant sub-Riemannian structures on the special linear group S L 2 ( R ) . Differ. Equ. 50 (2014) 1541–1547. | MR | Zbl | DOI

[24] R. Montgomery, A Tour of sub-Riemannian Geometry, their Geodesics and Applications. Mathematical Surveys and Monographs, Vol. 91, American Mathematical Society (2002). | MR | Zbl

[25] B. Sheller, Symmetry Reduction in K — P Problems, Ph.D. Thesis, Department of Mathematics, Iowa State University (2019). | MR

Cité par Sources :