Second-order analysis of Fokker–Planck ensemble optimal control problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 77

Ensemble optimal control problems governed by a Fokker-Planck equation with space-time dependent controls are investigated. These problems require the minimisation of objective functionals of probability type and aim at determining robust control mechanisms for the ensemble of trajectories of the stochastic system defining the Fokker-Planck model. In this work, existence of optimal controls is proved and a detailed analysis of their characterization by first- and second-order optimality conditions is presented. For this purpose, the well-posedness of the Fokker-Planck equation, and new estimates concerning an inhomogeneous Fokker-Planck model are discussed, which are essential to prove the necessary regularity and compactness of the control-to-state ma p appearing in the first-and second-order analysis.

DOI : 10.1051/cocv/2022066
Classification : 35Q84, 35Q93, 49J20, 49K20
Keywords: Optimal control theory, Fokker-Planck equation, ensemble optimal control problems, second-order analysis, optimality conditions, stochastic drift-diffusion process
@article{COCV_2022__28_1_A77_0,
     author = {K\"orner, Jacob and Borz{\`\i}, Alfio},
     title = {Second-order analysis of {Fokker{\textendash}Planck} ensemble optimal control problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022066},
     mrnumber = {4524413},
     zbl = {1505.35336},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022066/}
}
TY  - JOUR
AU  - Körner, Jacob
AU  - Borzì, Alfio
TI  - Second-order analysis of Fokker–Planck ensemble optimal control problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022066/
DO  - 10.1051/cocv/2022066
LA  - en
ID  - COCV_2022__28_1_A77_0
ER  - 
%0 Journal Article
%A Körner, Jacob
%A Borzì, Alfio
%T Second-order analysis of Fokker–Planck ensemble optimal control problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022066/
%R 10.1051/cocv/2022066
%G en
%F COCV_2022__28_1_A77_0
Körner, Jacob; Borzì, Alfio. Second-order analysis of Fokker–Planck ensemble optimal control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 77. doi: 10.1051/cocv/2022066

[1] R. A. Adams and J. J. Fournier, Sobolev Spaces. Elsevier (2003). | MR | Zbl

[2] M. Annunziato and A. Borzi, A Fokker-Planck control framework for multidimensional stochastic processes. J. Comput. Appi. Math. 237 (2013) 487–507. | MR | Zbl | DOI

[3] M. Annunziato and A. Borzi, A Fokker-Planck control framework for stochastic systems. EMS Surv. Math. Sci. 5 (2018) 65–98. | MR | Zbl | DOI

[4] M. S. Aronna and F. Tröltzsch, First and second order optimality conditions for the control of Fokker-Planck equations. ESAIM: COCV 27 (2021) 15. | MR | Zbl

[5] J. Bartsch, A. Borzi, F. Fanelli and S. Roy, A theoretical investigation of Brockett’s ensemble optimal control problems. Calc. Variat. Partial Differ. Equ. 58 (2019) 1–34. | MR | Zbl

[6] J. Bartsch, A. Borzi, F. Fanelli and S. Roy, A numerical investigation of Brockett’s ensemble optimal control problems. Numer. Math. 149 (2021) 1–42. | MR | Zbl | DOI

[7] J. Bartsch, G. Nastasi and A. Borzi, Optimal control of the Keilson-Storer caster equation in a Monte Carlo framework. J. Comput. Theor. Transport 50 (2021) 454–482. | MR | Zbl | DOI

[8] M. Bengfort, H. Malchow and F. M. Hilker, The Fokker-Planck law of diffusion and pattern formation in heterogeneous environments. J. Math. Biol. 73 (2016) 683–704. | MR | Zbl | DOI

[9] A. Bensoussan, Stochastic Control by Functional Analysis Methods. Elsevier (2011). | MR

[10] A. Borzi, The Fokker-Planck framework in the modeling of pedestrians’ motion, Chapter 6 in Crowd Dynamics, Volume 2, Modeling and Simulation in Science, Engineering and Technology, edited by L. Gibelli. Birkhäuser, Cham, Switzerland (2020) 111–131. | MR | DOI

[11] T. Breiten, K. Kunisch and L. Pfeiffer, Control strategies for the Fokker-Planck equation. ESAIM: COCV 24 (2018) 741–763. | MR | Zbl | Numdam

[12] T. Breitenbach and A. Borzi, The Pontryagin maximum principle for solving Fokker-Planck optimal control problems. Comput. Optim. Appi. 76 (2020) 499–533. | MR | Zbl | DOI

[13] T. Breitenbach and A. Borzi, A sequential quadratic Hamiltonian method for solving parabolic optimal control problems with discontinuous cost functionals. J. Dyn. Control Syst. 25 (2019) 403–435. | MR | Zbl | DOI

[14] R. W. Brockett, Minimum attention control, in Proceedings of the 36th IEEE Conference on Decision and Control 3 (1997) 2628–2632. | DOI

[15] R. W. Brockett, Optimal control of the Liouville equation. Proceedings of the International Conference on Complex Geometry and Related Fields. AMS/IP Stud. Adv. Math. 39 (2007) 23–35. | MR | Zbl | DOI

[16] R. W. Brockett, Notes on the control of the Liouville equation. Control of partial differential equations, Lecture Notes in Math. 2048. Springer, Heidelberg (2012) 101–129. | MR

[17] B. Buonomo, D. Lacitignola and C. Vargas-De-Leon, Qualitative analysis and optimal control of an epidemic model with vaccination and treatment. Math. Comput. Simul. 100 (2014) 88–102. | MR | Zbl | DOI

[18] B. Buonomo, On the optimal vaccination strategies for horizontally and vertically transmitted infectious diseases. J. Biolog. Syst. 19 (2011) 263–279. | MR | Zbl | DOI

[19] E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22 (2012) 261–279. | MR | Zbl | DOI

[20] E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control. Jahresber. Dtsch. Math. Ver. 117 (2015) 3–44. | MR | Zbl | DOI

[21] M. Chipot, Elements of Nonlinear Analysis. Springer Science & Business Media (2000). | MR | Zbl | DOI

[22] L. C. Evans, Partial differential equations. Graduate Stud. Math. 19 (1998) 7. | MR | Zbl

[23] A. Fleig and R. Guglielmi, Optimal control of the Fokker-Planck equation with space-dependent controls. J. Optim. Theory Appl. 174 (2017) 408–427. | MR | Zbl | DOI

[24] D. A. Gomes and J. Saude, Mean field games models - a brief survey. Dyn. Games Appl. 4 (2014) 110–154. | MR | Zbl | DOI

[25] P. Grandits, R. M. Kovacevic and V. M. Veliov, Optimal control and the value of information for a stochastic epidemiological SIS-model. J. Math. Anal. Appl. 476 (2019) 665–695. | MR | Zbl | DOI

[26] P. Han, Z. Chang and X. Meng, Asymptotic dynamics of a stochastic SIR epidemic system affected by mixed nonlinear incidence rates. Complexity (2020) 2020. | Zbl

[27] J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. | MR | Zbl | DOI

[28] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications (Vol. 1). Springer Science & Business Media, Berlin Heidelberg, (1972). | MR | Zbl

[29] H. Lou and J. Yong, Optimality conditions for semilinear elliptic equations with leading term containing controls. SIAM J. Control Optim. 48 (2009) 2366–2387. | MR | Zbl | DOI

[30] H. Lou and J. Yong, Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Math. Control Related Fields 8 (2018) 57–88. | MR | Zbl | DOI

[31] X. Mao, Stochastic Differential Equations and Applications. Elsevier (2007). | Zbl

[32] A. Röosch and D. Wachsmuth, Numerical verification of optimality conditions. SIAM J. Control Optim. 47 (2008) 2557–2581. | MR | Zbl | DOI

[33] H. Risken, Fokker-Planck Equation. Springer, Berlin, Heidelberg (1996).

[34] S. Roy, M. Annunziato, A. Borzi and C. Klingenberg, A Fokker-Planck approach to control collective motion. Comput. Optim. Appl. 69 (2018) 423–459. | MR | Zbl | DOI

[35] S. Roy, M. Annunziato and A. Borzi, A Fokker-Planck feedback control-constrained approach for modelling crowd motion. J. Comput. Theor. Transport 45 (2016) 442–458. | MR | Zbl | DOI

[36] S. Roy, A. Borzi and A. Habbal, Pedestrian motion modelled by Fokker-Planck Nash games. Royal Soc. Open Sci. 4 (2017) 170648. | MR | DOI

[37] M. Schienbein and H. Gruler, Langevin equation, Fokker-Planck equation and cell migration. Bull. Math. Biol. 55 (1993) 585–608. | Zbl | DOI

[38] R. K. Tagiyev, Optimal control by the coefficients of a parabolic equation. Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 24 (2004) 247–256. | MR | Zbl

[39] R. K. Tagiyev, On optimal control of the hyperbolic equation coefficients. Autom. Remote Control 73 (2012) 1145–1155. | MR | Zbl | DOI

[40] D. Wachsmuth, The regularity of the positive part of functions in L 2 ( I ; H 1 ( Ω ) ) H 1 ( I ; H 1 ( Ω ) * ) with applications to parabolic equations. Comment. Math. Univers. Carolinae 57 (2016) 327–332. | MR | Zbl

[41] Z. Wu, J. Yin and C. Wang, Elliptic & Parabolic Equations. World Scientific (2006). | MR | Zbl

[42] Y. Zhang, Y. Li, Q. Zhang and A. Li, Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules. Physica A 501 (2018) 178–187. | MR | Zbl | DOI

Cité par Sources :

Partially supported by the BMBF-Project iDeLIVER: Intelligent MR Diagnosis of the Liver by Linking Model and Data-driven Processes.