Controllability of a Stokes system with a diffusive boundary condition
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 63

We are interested by the controllability of a fluid-structure interaction system where the fluid is viscous and incompressible and where the structure is elastic and located on a part of the boundary of the fluid domain. In this article, we simplify this system by considering a linearization and by replacing the wave/plate equation for the structure by a heat equation. We show that the corresponding system coupling the Stokes equations with a heat equation at its boundary is null-controllable. The proof is based on Carleman estimates and interpolation inequalities. One of the Carleman estimates corresponds to the case of Ventcel boundary conditions. This work can be seen as a first step to handle the real system where the structure is modeled by the wave or the plate equation.

DOI : 10.1051/cocv/2022057
Classification : 76D05, 35Q30, 93B05, 93B07, 93C10
Keywords: Null controllability, Navier-Stokes systems, Carleman estimates
@article{COCV_2022__28_1_A63_0,
     author = {Buffe, R\'emi and Takahashi, Tak\'eo},
     title = {Controllability of a {Stokes} system with a diffusive boundary condition},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022057},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022057/}
}
TY  - JOUR
AU  - Buffe, Rémi
AU  - Takahashi, Takéo
TI  - Controllability of a Stokes system with a diffusive boundary condition
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022057/
DO  - 10.1051/cocv/2022057
LA  - en
ID  - COCV_2022__28_1_A63_0
ER  - 
%0 Journal Article
%A Buffe, Rémi
%A Takahashi, Takéo
%T Controllability of a Stokes system with a diffusive boundary condition
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022057/
%R 10.1051/cocv/2022057
%G en
%F COCV_2022__28_1_A63_0
Buffe, Rémi; Takahashi, Takéo. Controllability of a Stokes system with a diffusive boundary condition. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 63. doi: 10.1051/cocv/2022057

[1] M. Badra and T. Takahashi , Maximal regularity for the Stokes system coupled with a wave equation: application to the system of interaction between a viscous incompressible fluid and an elastic wall. J. Evol. Equ. 22 (2022) 71. | MR | Zbl | DOI

[2] M. Badra and T. Takahashi , Feedback stabilization of a fluid-rigid body interaction system. Adv. Differ. Equ. 19 (2014) 1137–1184. | MR | Zbl

[3] M. Badra and T. Takahashi , Feedback stabilization of a simplified 1d fluid-particle system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) 369–389. | MR | Zbl | Numdam | DOI

[4] M. Badra and T. Takahashi , Feedback boundary stabilization of 2D fluid-structure interaction systems. Discrete Contin. Dyn. Syst. 37 (2017) 2315–2373. | MR | Zbl | DOI

[5] M. Badra and T. Takahashi , Gevrey regularity for a system coupling the Navier-Stokes system with a beam equation. SIAM J. Math. Anal. 51 (2019) 4776–4814. | MR | Zbl | DOI

[6] M. Badra and T. Takahashi , Gevrey regularity for a system coupling the Navier-Stokes system with a beam: the non-flat case. Funkcialaj Ekvacioj 65 (2022) 63–109. | MR | Zbl | DOI

[7] H. Beirão Da Veiga , On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6 (2004) 21–52. | MR | Zbl | DOI

[8] M. Bellassoued and J. Le Rousseau , Carleman estimates for elliptic operators with complex coefficients. Part I: Boundary value problems. J. Math. Pures Appl. 104 (2015) 657–728. | MR | Zbl | DOI

[9] M. Bellassoued and J. Le Rousseau , Carleman estimates for elliptic operators with complex coefficients. Part II: Transmission problems. J. Math. Pures Appl. 115 (2018) 127–186. | MR | Zbl | DOI

[10] M. Boulakia and S. Guerrero , Local null controllability of a fluid-solid interaction problem in dimension 3. J. Eur. Math. Soc. (JEMS) 15 (2013) 825–856. | MR | Zbl | DOI

[11] M. Boulakia and A. Osses , Local null controllability of a two-dimensional Fluid-structure interaction problem. ESAIM: COCV 14 (2008) 1–42. | MR | Zbl | Numdam

[12] F. Boyer and P. Fabrie , Mathematical tools for the study of the incompressible Navier-Stokes equations and related models. Vol. 183 of Applied Mathematical Sciences. Springer, New York (2013). | MR | Zbl | DOI

[13] R. Buffe , Stabilization of the wave equation with Ventcel boundary condition, J. Math. Pures Appl. 108 (2017) 207–259. | MR | Zbl | DOI

[14] R. Buffe and L. Gagnon , Spectral inequality for an Oseen operator in a two dimensional channel (2021), working paper or preprint.

[15] S. Čanić , B. Muha and M. Bukač , Fluid-structure interaction in hemodynamics: modeling, analysis, and numerical simulation, in Fluid-structure interaction and biomedical applications, Adv. Math. Fluid Mech. Birkhäuser/Springer, Basel (2014), pp. 79–195. | MR | Zbl | DOI

[16] A. Chambolle , B. Desjardins , M. J. Esteban and C. Grandmont , Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7 (2005) 368–404. | MR | Zbl | DOI

[17] F. W. Chaves-Silva and G. Lebeau , Spectral inequality and optimal cost of controllability for the Stokes system. ESAIM: COCV 22 (2016) 1137–1162. | MR | Zbl | Numdam

[18] S. P. Chen and R. Triggiani , Proof of extensions of two conjectures on structural damping for elastic systems. Pacific J. Math. 136 (1989) 15–55. | MR | Zbl | DOI

[19] N. Cîndea , S. Micu , I. Rovenţa and M. Tucsnak , Particle supported control of a fluid-particle system. J. Math. Pures Appl. 104 (2015) 311–353. | MR | Zbl | DOI

[20] I. A. Djebour , Local null controllability of a fluid-rigid body interaction problem with Navier slip boundary conditions. ESAIM: COCCV 27 (2021) 46. | MR | Zbl

[21] A. Doubova and E. Fernández-Cara , Some control results for simplified one-dimensional models of fluid-solid interaction. Math. Models Methods Appl. Sci. 15 (2005) 783–824. | MR | Zbl | DOI

[22] E. Fernández-Cara , S. Guerrero , O. Y. Imanuvilov and J.-P. Puel , Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. | MR | Zbl | DOI

[23] C. Grandmont , Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40 (2008) 716–737. | MR | Zbl | DOI

[24] C. Grandmont and M. Hillairet , Existence of global strong solutions to a beam-fluid interaction system. Arch. Ration. Mech. Anal. 220 (2016) 1283–1333. | MR | Zbl | DOI

[25] C. Grandmont , M. Hillairet and J. Lequeurre , Existence of local strong solutions to fluid-beam and fluid-rod interaction systems. Ann. Inst. H. Poincare Anal. Non Linéaire 36 (2019) 1105–1149. | MR | Zbl | Numdam | DOI

[26] O. Imanuvilov and T. Takahashi , Exact controllability of a fluid-rigid body system. J. Math. Pures Appl. 87 (2007) 408–437. | MR | Zbl | DOI

[27] O. Y. Imanuvilov , On exact controllability for the Navier-Stokes equations, ESAIM: COCV 3 (1998) 97–131. | MR | Zbl | Numdam

[28] D. Jerison and G. Lebeau , Nodal sets of sums of eigenfunctions, in Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Math., 223–239, Univ. Chicago Press, Chicago, IL (1999). | MR | Zbl

[29] J. Le Rousseau , M. Léautaud and L. Robbiano , Controllability of a parabolic system with a diffuse interface. J. Eur. Math. Soc. (JEMS) 15 (2013) 1485–1574. | MR | Zbl | DOI

[30] J. Le Rousseau , G. Lebeau and L. Robbiano , Elliptic Carleman estimates and applications to stabilization and controllability. Volume I. Dirichlet boundary conditions on Euclidean space. Prog. Nonlinear Differ. Equ. Appl., vol. 97, Cham: Birkhäuser (2021). | MR | Zbl

[31] J. Le Rousseau , G. Lebeau and L. Robbiano , Elliptic Carleman estimates and applications to stabilization and controllability. Volume II. General Boundary Conditions on Riemannian Manifolds. Prog. Nonlinear Differ. Equ. Appl., vol. 97, Birkhäauser, Cham (2022). | Zbl | MR

[32] J. Le Rousseau and N. Lerner , Carleman estimates for anisotropic elliptic operators with jumps at an interface. Anal. PDE 6 (2013) 1601–1648. | MR | Zbl | DOI

[33] J. Le Rousseau and L. Robbiano , Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations. Arch. Ratl. Mech. Anal. 195 (2010) 953–990. | MR | Zbl | DOI

[34] J. Le Rousseau and L. Robbiano , Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces. Invent. Math. 183 (2011) 245–336. | MR | Zbl | DOI

[35] M. Léautaud , Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems. J. Funct. Anal. 258 (2010) 2739–2778. | MR | Zbl | DOI

[36] G. Lebeau and L. Robbiano , Contrôle exact de l’áquation de la chaleur. Comm. Partial Differ. Equ. 20 (1995) 335–356. | MR | Zbl | DOI

[37] D. Lengeler , Weak solutions for an incompressible, generalized Newtonian fluid interacting with a linearly elastic Koiter type shell. SIAM J. Math. Anal. 46 (2014) 2614–2649. | MR | Zbl | DOI

[38] D. Lengeler and M. Růžička , Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell. Arch. Rati. Mech. Anal. 211 (2014) 205–255. | MR | Zbl | DOI

[39] J. Lequeurre , Existence of strong solutions to a fluid-structure system. SIAM J. Math. Anal. 43 (2011) 389–410. | MR | Zbl | DOI

[40] Y. Liu , T. Takahashi and M. Tucsnak , Single input controllability of a simplified fluid-structure interaction model. ESAIM: COCV 19 (2013) 20–42. | MR | Zbl | Numdam

[41] D. Maity , A. Roy and T. Takahashi , Existence of strong solutions for a system of interaction between a compressible viscous fluid and a wave equation. Nonlinearity 34 (2021) 2659–2687. | MR | Zbl | DOI

[42] D. Maity and T. Takahashi , L p Theory for the Interaction Between the Incompressible Navier—Stokes System and a Damped Plate. J. Math. Fluid Mech. 23 (2021) 103. | MR | Zbl | DOI

[43] D. Maity and T. Takahashi , Existence and uniqueness of strong solutions for the system of interaction between a compressible Navier-Stokes-Fourier fluid and a damped plate equation. Nonlinear Anal. Real World Appl. 59 (2021) Paper No. 103267, 34. | MR | Zbl | DOI

[44] L. Miller , A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1465–1485. | MR | Zbl

[45] S. Mitra , Observability and unique continuation of the adjoint of a linearized simplified compressible fluid-structure model in a 2D channel. ESAIM: COCV 27 (2021) Paper No. S18, 51. | MR | Zbl | Numdam

[46] B. Muha and S. Čanić , Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ratl. Mech. Anal. 207 (2013) 919–968. | MR | Zbl | DOI

[47] B. Muha and S. Čanić , Existence of a weak solution to a nonlinear Fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ratl. Mech. Anal. 207 (2013) 919–968. | MR | Zbl | DOI

[48] B. Muha and S. Čanić , A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof. Commun. Inf. Syst. 13 (2013) 357–397. | MR | Zbl | DOI

[49] B. Muha and S. Čanić , Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy. Interfaces Free Bound. 17 (2015) 465–495. | MR | Zbl | DOI

[50] A. Quarteroni , M. Tuveri and A. Veneziani , Computational vascular fluid dynamics: problems, models and methods. Comput. Visualizat. Sci. 2 (2000) 163–197. | Zbl | DOI

[51] M. Ramaswamy , A. Roy and T. Takahashi , Remark on the global null controllability for a viscous Burgers-particle system with particle supported control. Appl. Math. Lett. 107 (2020) 106483, 7. | MR | Zbl | DOI

[52] J.-P. Raymond , Feedback stabilization of a fluid-structure model. SIAM J. Control Optim. 48 (2010) 5398–5443.

[53] L. Robbiano , Cost function and control of solutions of hyperbolic equations. Asymptotic Anal. 10 (1995) 95–115. | MR | Zbl | DOI

[54] A. Roy and T. Takahashi , Local null controllability of a rigid body moving into a Boussinesq flow. Math. Control Relat. Fields 9 (2019) 793–836. | MR | Zbl | DOI

[55] A. Roy and T. Takahashi , Stabilization of a rigid body moving in a compressible viscous fluid. J. Evol. Equ. 21 (2021) 167–200. | MR | Zbl | DOI

[56] D. L. Russell , A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Studies in Appl. Math. 52 (1973) 189–211. | MR | Zbl | DOI

[57] T. Takahashi , M. Tucsnak and G. Weiss , Stabilization of a fluid-rigid body system. J. Differ. Equ. 259 (2015) 6459–6493. | MR | Zbl | DOI

[58] S. Trifunović and Y. Wang , Weak solution to the incompressible viscous fluid and a thermoelastic plate interaction problem in 3D. Acta Math. Sci. Ser. B (Engl. Ed.) 41 (2021) 19–38. | MR | Zbl

[59] S. Trifunović and Y.-G. Wang , Existence of a weak solution to the Fluid-structure interaction problem in 3D. J. Differ. Equ. 268 (2020) 1495–1531. | MR | Zbl | DOI

[60] M. Tucsnak and G. Weiss , Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbucher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel (2009). | MR | Zbl

Cité par Sources :