Higher differentiability results in the scale of Besov spaces to a class of double-phase obstacle problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 51

We study the higher fractional differentiability properties of the gradient of the solutions to variational obstacle problems of the form

min Ω Fx,w,Dwdx:wκ ψ Ω,

with F double phase functional of the form

Fx,w,z=bx,wz p +axz q ,

where Ω is a bounded open subset of ℝn, ψ ∈ W1,p(Ω) is a fixed function called obstacle and = {wW1,P(Ω) : w ≥ ψ a.e. in Ω} is the class of admissible functions. Assuming that the gradient of the obstacle belongs to a suitable Besov space, we are able to prove that the gradient of the solution preserves some fractional differentiability property.

DOI : 10.1051/cocv/2022050
Classification : 26A27, 49J40, 47J20
Keywords: Besov spaces, higher differentiability, obstacle problem, double phase, non-standard growth
@article{COCV_2022__28_1_A51_0,
     author = {Giuseppe Grimaldi, Antonio and Ipocoana, Erica},
     title = {Higher differentiability results in the scale of {Besov} spaces to a class of double-phase obstacle problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022050},
     mrnumber = {4459525},
     zbl = {1495.49007},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022050/}
}
TY  - JOUR
AU  - Giuseppe Grimaldi, Antonio
AU  - Ipocoana, Erica
TI  - Higher differentiability results in the scale of Besov spaces to a class of double-phase obstacle problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022050/
DO  - 10.1051/cocv/2022050
LA  - en
ID  - COCV_2022__28_1_A51_0
ER  - 
%0 Journal Article
%A Giuseppe Grimaldi, Antonio
%A Ipocoana, Erica
%T Higher differentiability results in the scale of Besov spaces to a class of double-phase obstacle problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022050/
%R 10.1051/cocv/2022050
%G en
%F COCV_2022__28_1_A51_0
Giuseppe Grimaldi, Antonio; Ipocoana, Erica. Higher differentiability results in the scale of Besov spaces to a class of double-phase obstacle problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 51. doi: 10.1051/cocv/2022050

[1] A. L. Baisón, A. Clop, R. Giova, J. Orobitg and A. Passarelli Di Napoli, Fractional differentiability for solutions of nonlinear elliptic equations. Potential Anal. 46 (2017) 403–430. | MR | Zbl | DOI

[2] P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase. Calc. Variat. 57 (2018). | MR | Zbl

[3] H. Brézis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities. Indiana Univ. Math. J. 23 (1973-1974) 831–844. | MR | Zbl | DOI

[4] L. A. Caffarelli and D. Kinderlehrer, Potential methods in variational inequalities. J. Anal. Math. 37 (1980) 285–295. | MR | Zbl | DOI

[5] H. J. Choe and J. L. Lewis, On the obstacle problem for quasilinear elliptic equations of p -Laplace type. SIAM J. Math. Anal. 22 (1991) 623–638. | MR | Zbl | DOI

[6] M. Colombo and G. Mingione, Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215 (2015) 443–496. | MR | Zbl | DOI

[7] A. Coscia, Regularity for minimizers of double phase functionals with mild transition and regular coefficients, J. Math. Anal. Appl. 501 (2021) 124569 | MR | Zbl | DOI

[8] G. Cupini, N. Fusco and R. Petti, Hölder continuity of local minimizers. J. Math. Anal. Appl. 235 (1999) 578–597. | MR | Zbl | DOI

[9] C. De Filippis and G. Mingione, Lipschitz bounds and nonautonomous integrals. Arch. Rational Mech. Anal. 242 (2021) 973–1057. | MR | Zbl | DOI

[10] F. Duzaar, Variational inequalities and harmonic mappings. J. Reine Angew. Math. 374 (1987) 39–60. | MR | Zbl

[11] F. Duzaar and M. Fuchs, Optimal regularity theorems for variational problems with obstacles. Manuscr. Math. 56 (1986) 209–234. | MR | Zbl | DOI

[12] M. Eleuteri, Hölder continuity results for a class of functionals with non standard growth. Boll. Unione Mat. Ital. 8 (2004) 129–157. | MR | Zbl

[13] M. Eleuteri and A. Passarelli Di Napoli, Higher differentiability for solutions to a class of obstacle problems. Calc. Var. 57 (2018) 115. | MR | Zbl | DOI

[14] M. Eleuteri and A. Passarelli Di Napoli, Regularity results for a class of non-differentiable obstacle problems. Nonlinear Anal. 194 (2020) 111434. | MR | Zbl | DOI

[15] G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. la 7 (1963-1964) 91–140. | MR | Zbl

[16] I. Fonseca, J. Malý and G. Mingione, Scalar minimizers with fractal singular sets. Arch. Ration. Mech. Anal. 72 (2004) 295–307. | MR | Zbl | DOI

[17] M. Fuchs, Hôolder continuity of the gradient for degenerate variational inequalities. Nonlinear Anal. 15 (1990) 85–100. | MR | Zbl | DOI

[18] C. Gavioli, Higher differentiability of solutions to a class of obstacle problems under non-standard growth conditions. Forum Math. 31 (2019) 1501–1516. | MR | Zbl | DOI

[19] C. Gavioli, A priori estimates for solutions to a class of obstacle problems under p , q -growth conditions. J. Elliptic Parabolic Equ. 5 (2019) 325–347. | MR | Zbl | DOI

[20] M. Giaquinta, Growth conditions and regularity, a counterexample. Manuscr. Math. 59 (1987) 245–248. | MR | Zbl | DOI

[21] E. Giusti, Direct methods in the calculus of variations. World Scientific publishing Co., Singapore (2003). | MR | Zbl | DOI

[22] A. G. Grimaldi and E. Ipocoana, Higher fractional differentiability for solutions to a class of obstacle problems with nonstandard growth conditions. Adv. Calc. Var. (2022) doi: . | DOI | MR | Zbl

[23] D. Haroske, Envelopes and sharp embeddings of function spaces. Chapman and Hall CRC, Boca Raton (2006). | MR | DOI

[24] P. Koskela, D. Yang and Y. Zhou, Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings. Adv. Math. 226 (2011) 3579–3621. | MR | Zbl | DOI

[25] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Academic Press, Cambridge (1980). | MR | Zbl

[26] J. Kristensen and G. Mingione, Boundary regularity in variational problems. Arch. Ration. Mech. Anal. 180 (2006) 331–398.

[27] P. Marcellini, Regularity and existence of solutions of elliptic equations with p , q -growth conditions. J. Differ. Equ. 90 (1991) 1–30. | MR | Zbl | DOI

[28] J. Ok, Regularity of ω -minimizers for a class of functionals with non-standard growth. Calc. Var. PDE 56 (2017). | MR | Zbl

[29] G. Stampacchia, Formes bilineaires coercivitives sur les ensembles convexes. C.R. Acad. Sci. Paris 258 (1964) 4413–4416. | MR | Zbl

[30] X. Zhang and S. Zheng, Besov regularity for the gradients of solutions to non-uniformly elliptic obstacle problems. J. Math. Anal. Appl. 505 (2021). | MR | Zbl

[31] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 675–710. | MR | Zbl

[32] V. V. Zhikov, On some variational problems. Russ. J. Math. Phys. 5 (1997) 105–116. | MR | Zbl

Cité par Sources :