In this paper, we consider a class of Monge-Ampère equations in a free boundary domain of ℝ2 where the value of the unknown function is prescribed on the free boundary. From a variational point of view, these equations describe an optimal transport problem from an a priori undetermined source domain to a prescribed target domain. We prove the existence and uniqueness of a variational solution to these Monge-Ampère equations under a singularity condition on the density function on the source domain. Furthermore, we provide regularity results under some conditions on the prescribed domain.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2022048
Keywords: Mass transportation, duality, Monge-Ampère
@article{COCV_2022__28_1_A60_0,
author = {Sedjro, Marc},
title = {Free boundary {Monge-Amp\`ere} equations},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2022},
publisher = {EDP-Sciences},
volume = {28},
doi = {10.1051/cocv/2022048},
mrnumber = {4474350},
zbl = {1498.49035},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2022048/}
}
Sedjro, Marc. Free boundary Monge-Ampère equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 60. doi: 10.1051/cocv/2022048
[1] , and , Gradient flows in metric spaces and the Wasserstein spaces of probability measures. Lectures in Mathematics, ETH Zurich, Birkhäuser (2005). | MR | Zbl
[2] , The regularity of mappings with a convex potential. J. Am. Math. Soc. 1 (1992) 99-104. | MR | Zbl | DOI
[3] and , Free boundaries in optimal transport and Monge-Ampere obstacle problems. Ann. Math. (2) 171 (2010) 673-730. | MR | Zbl | DOI
[4] , A three-dimensional generalisation of Eliassen's balanced vortex equations derived from Hamilton's principle. Quart. J. Roy. Meteor. Soc. 117 (1991) 435-448.
[5] and , On a model of forced axisymmetric flows. SIAM J. Math. Anal. 6 (2014) 3983-4013. | MR | Zbl | DOI
[6] , Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv. 5 (1951) 19-59. | MR | Zbl
[7] , The Monge Ampere Equations and its Applications. Zurich Lectures in Advanced Mathematics, European Mathematical Society (2017). | MR | Zbl | DOI
[8] and , Partial regularity of Brenier solutions of Monge Ampere Equations. Discrete Contin. Dyn. Syst. 28 (2010) 559-565. | MR | Zbl | DOI
[9] , On the frontogenesis and cyclogenesis in the atmosphere, Part I. Geofys. Publik. 16 (1946) 1-28.
[10] , An elementary proof of the polar decomposition of vector-valued functions. Arch. Rati. Mech. Anal. 128 (1995) 380-399. | MR | Zbl
[11] , Quelques problemes d'analyse convexe. Rapport d'habilitation a diriger des recherches (1995). Available at https://www.math.ucla.edu/~wgangbo/publications/.
[12] , A Monge-Ampere equation with an unusual boundary condition. Symmetry 7 (2015) 2009-2024. | MR | Zbl | DOI
[13] , and , A geometric model of balanced axisymmetric flow with embedded penetrative convection. J. Atmos. Sci. 45 (1988) 2609-2621. | DOI
[14] , Topics in optimal transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society (2003). | MR | Zbl
Cité par Sources :





