Boundary regularity of minimal oriented hypersurfaces on a manifold
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 52

In this article we prove that all boundary points of a minimal oriented hypersurface in a Riemannian manifold are regular, that is, in a neighborhood of any boundary point, the minimal surface is a C1,¼ submanifold with boundary.

DOI : 10.1051/cocv/2022047
Classification : 35B05, 35D99, 35J25, 49Q05, 49Q15
Keywords: Minimal surfaces, Boundary regularity, Integral currents, Codimension
@article{COCV_2022__28_1_A52_0,
     author = {Steinbr\"uchel, Simone},
     title = {Boundary regularity of minimal oriented hypersurfaces on a manifold},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022047},
     mrnumber = {4459522},
     zbl = {1496.35135},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022047/}
}
TY  - JOUR
AU  - Steinbrüchel, Simone
TI  - Boundary regularity of minimal oriented hypersurfaces on a manifold
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022047/
DO  - 10.1051/cocv/2022047
LA  - en
ID  - COCV_2022__28_1_A52_0
ER  - 
%0 Journal Article
%A Steinbrüchel, Simone
%T Boundary regularity of minimal oriented hypersurfaces on a manifold
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022047/
%R 10.1051/cocv/2022047
%G en
%F COCV_2022__28_1_A52_0
Steinbrüchel, Simone. Boundary regularity of minimal oriented hypersurfaces on a manifold. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 52. doi: 10.1051/cocv/2022047

[1] W. K. Allard, On boundary regularity for Plateau’s problem. Bull. Am. Math. Soc. 75 (1969) 522–523. | MR | Zbl | DOI

[2] W. K. Allard, On the first variation of a varifold. Ann. Math. 95 (1972) 417–491. | MR | Zbl | DOI

[3] W. K. Allard, On the first variation of a varifold: boundary behavior. Ann. Math. 101 (1975) 418–446. | MR | Zbl | DOI

[4] F. J. Almgren, Jr. Almgren’s big regularity paper, volume 1 of World Scientific Monograph Series in Mathematics (2000). | MR | Zbl

[5] E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem. Invent. Math. 7 (1969) 243–268. | MR | Zbl | DOI

[6] J. E. Brothers, Existence and structure of tangent cones at the boundary of an area minimizing integral current. Indiana Univ. Math. J. 26 (1977) 1027–1044. | MR | Zbl | DOI

[7] C. De Lellis, Almgren’s Q -valued functions revisited. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II-IV: Invited Lectures. World Scientific (2010) 1910–1933. | MR | Zbl

[8] C. De Lellis and E. Spadaro, Multiple valued functions and integral currents. Preprint (2013). | arXiv | MR

[9] C. De Lellis and E. Spadaro, Regularity of area minimizing currents I: gradient L p estimates. Geometr. Funct. Anal. 24 (2014) 1831–1884. | MR | Zbl | DOI

[10] C. De Lellis and E. Spadaro, Regularity of area minimizing currents II: center manifold. Ann. Math. 183 (2016) 499–575. | MR | Zbl | DOI

[11] C. De Lellis and E. Spadaro, Regularity of area minimizing currents III: blow-up. Ann. Math. 183 (2016) 577–617. | MR | Zbl | DOI

[12] C. De Lellis, G. De Philippis, J. Hirsch and A. Massaccesi, On the boundary behavior of mass-minimizing integral currents. Preprint (2018). | arXiv | MR

[13] J. Douglas, Solution of the problem of Plateau. Trans. Am,. Math. Soc. 33 (1931) 263–321. | MR | JFM | DOI

[14] H. Federer, Geometric measure theory. Springer (1969). | MR | Zbl

[15] H. Federer and W. H. Fleming, Normal and integral currents. Ann. Math. 72 (1960) 458–520. | MR | Zbl | DOI

[16] D. Gilbarg and N. S. Trudinger, Vol. 224 of Elliptic Partial Differential Equations of Second Order. Springer Science & Business Media (2001). | MR | Zbl | DOI

[17] R. M. Hardt, On boundary regularity for integral currents or flat chains modulo two minimizing the integral of an elliptic integrand. Commun. Partial Differ. Equ. 2 (1977) 1163–1232. | MR | Zbl | DOI

[18] R. Hardt and L. Simon, Boundary regularity and embedded solutions for the oriented plateau problem. Ann. Math. 110 (1979) 439–486. | MR | Zbl | DOI

[19] P. Pucci and J. B. Serrin, Vol. 73 of The maximum principle. Springer Science & Business Media (2007). | MR | Zbl | DOI

[20] T. Radó, On Plateau’s Problem. Ann. Math. 31 (1930) 457–469. | MR | JFM | DOI

[21] R. Schoen and L. Simon, Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34 (1981) 741–797. | MR | DOI

[22] J. Simons, Minimal varieties in Riemannian manifolds. Ann. Math. 88 (1968) 62–105. | MR | Zbl | DOI

[23] L. Simon et al., Lectures on geometric measure theory. The Australian National University, Mathematical Sciences Institute, Centre for Mathematics & its Applications (1983). | MR | Zbl

[24] F. Trêves, Vol. 62 of Basic linear partial differential equations. Academic Press (1975). | MR | Zbl

Cité par Sources :