The calibration method for the thermal insulation functional
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 50

We provide minimality criteria by construction of calibrations for functionals arising in the theory of thermal insulation.

DOI : 10.1051/cocv/2022045
Classification : 49K10, 35R35
Keywords: Thermal insulation, calibration method, free boundary problems
@article{COCV_2022__28_1_A50_0,
     author = {Labourie, C. and Milakis, E.},
     title = {The calibration method for the thermal insulation functional},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022045},
     mrnumber = {4454156},
     zbl = {1496.80003},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022045/}
}
TY  - JOUR
AU  - Labourie, C.
AU  - Milakis, E.
TI  - The calibration method for the thermal insulation functional
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022045/
DO  - 10.1051/cocv/2022045
LA  - en
ID  - COCV_2022__28_1_A50_0
ER  - 
%0 Journal Article
%A Labourie, C.
%A Milakis, E.
%T The calibration method for the thermal insulation functional
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022045/
%R 10.1051/cocv/2022045
%G en
%F COCV_2022__28_1_A50_0
Labourie, C.; Milakis, E. The calibration method for the thermal insulation functional. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 50. doi: 10.1051/cocv/2022045

[1] G. Alberti, G. Bouchitté and G. Dal Maso, The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Equ. 16 (2003) 299–333. | MR | Zbl | DOI

[2] H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105–144. | MR | Zbl

[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). xviii–434 pp. | MR | Zbl

[4] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. (4) 135 (1984) 293–318. | MR | Zbl | DOI

[5] H. Bischof, A. Chambolle, D. Cremers and T. Pock, An algorithm for minimizing the Mumford-Shah functional. 2009 IEEE 12th International Conference on Computer Vision (2009).

[6] B. Bogosel and M. Foare, Numerical implementation in 1D and 2D of a shape optimization problem with Robin boundary conditions. Preprint http://www.cmap.polytechnique.fr/~beniamin.bogosel/pdfs/Robin.pdf.

[7] G. Bouchitté and I. Fragalà, A duality theory for non-convex problems in the calculus of variations. Arch. Rati. Mech. Anal. 229 (2018) 361–415. | MR | Zbl | DOI

[8] D. Bucur, G. Buttazzo and C. Nitsch, Two optimization problems in thermal insulation. Notices Amer. Math. Soc. 64 (2017) 830–835. | MR | Zbl | DOI

[9] D. Bucur, G. Buttazzo and C. Nitsch, Symmetry breaking for a problem in optimal insulation. J. Math. Pures Appl. (9) 107 (2017) 451–463. | MR | DOI

[10] D. Bucur and A. Giacomini, Shape optimization problems with Robin conditions on the free boundary. Ann. Inst. H. Poincare Anal. Non Linéaire 33 (2016) 1539–1568. | MR | Zbl | Numdam | DOI

[11] D. Bucur and S. Luckhaus, Monotonicity formula and regularity for general free discontinuity problems. Arch. Ratl. Mech. Anal. 211 (2014) 489–511. | MR | Zbl | DOI

[12] D. Bucur, M. Nahon, C. Nitsch and C. Trombetti, Shape optimization of a thermal insulation problem. Preprint available at . | arXiv | MR | Zbl

[13] G. Buttazzo, An optimization problem for thin insulating layers around a conducting medium. Boundary control and boundary variations (Nice, 1986). Lecture Notes in Comput. Sci., 100, Springer, Berlin (1988) 91–95. | MR | Zbl | DOI

[14] L. A. Caffarelli and D. Kriventsov, A free boundary problem related to thermal insulation. Comm.. Partial Differ. Equ. 41 (2016) 1149–1182. | MR | Zbl | DOI

[15] A. Chambolle, Convex representation for lower semicontinuous envelopes of functionals in L 1 . J. Convex Anal. 8 (2001) 149–170. | MR | Zbl

[16] A. Chambolle, D. Cremers and E. Strekalovskiy, A Convex, Representation for the Vectorial Mumford-Shah Functional, in IEEE Conference on Computer Vision and Pattern Recognition (2012).

[17] A. Chambolle, V. Duval, G. Peyré and C. Poon, Geometric properties of solutions to the total variation denoising problem. Inverse Probl. 33 (2017) 015002, 44 pp. | MR | Zbl | DOI

[18] A. Chambolle and M. Novaga, Anisotropic and crystalline mean curvature flow of mean-convex sets. Annali Scuola Normale Superiore - Classe di Scienze (2021), p. 17. | MR | Zbl

[19] G. Dal Maso, M. G. Mora and M. Morini, Local calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity sets. J. Math. Pures Appl. (9) 79 (2000) 141–162. | MR | Zbl | DOI

[20] T. De Pauw and D. Smets, On explicit solutions for the problem of Mumford and Shah. Commun. Contemp. Math. 1 (1999) 201–212. | MR | Zbl | DOI

[21] G. B. Folland, Introduction to partial differential equations. Second edition. Princeton University Press, Princeton, NJ (1995). xii+324, pp. | MR | Zbl

[22] N. Fusco, An overview of the Mumford-Shah problem. Milan J. Math. 71 (2003) 95–119. | MR | Zbl | DOI

[23] D. Kriventsov, A free boundary problem related to thermal insulation: flat implies smooth. Calc. Var. Partial Differ. Equ. 58 (2019) Paper No. 78, 83 pp. | MR | Zbl | DOI

[24] C. Labourie and E. Milakis, Higher integrability of the gradient for the Thermal Insulation problem. Preprint available at . | arXiv | MR | Zbl

[25] F. Maggi, Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory. Cambridge Studies in Advanced Mathematics, 135. Cambridge University Press, Cambridge (2012). xx+454 pp. | MR | Zbl

[26] M. G. Mora, Local calibrations for minimizers of the Mumford-Shah functional with a triple junction. Commun. Contemp. Math. 4 (2002) 297–326. | MR | Zbl | DOI

[27] M. G. Mora and M. Morini, Local calibrations for minimizers of the Mumford-Shah functional with a regular discontinuity set. Ann. Inst. H. Poincare Anal. Non Linaire 18 (2001) 403–436. | MR | Zbl | Numdam | DOI

[28] M. Morini, Global calibrations for the non-homogeneous Mumford-Shah functional. Ann. Sci. Norm. Super. Pisa CI. Sci. (5) 1 (2002) 603–648. | MR | Zbl | Numdam

[29] C. Scheven and T. Schmidt, BV supersolutions to equations of 1-Laplace and minimal surface type. J. Differ. Equ. 261 (2016) 1904–1932. | MR | Zbl | DOI

Cité par Sources :

This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: EXCELLENCE/1216/0025).