Optimal semigroup regularity for velocity coupled elastic systems: a degenerate fractional damping case
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 46

In this note, we consider an abstract system of two damped elastic systems. The damping involves the average velocity and a fractional power of the principal operator, with power θ in [0, 1], The damping matrix is degenerate, which makes the regularity analysis more delicate. First, using a combination of the frequency domain method and multipliers technique, we prove the following regularity for the underlying semigroup:

  • The semigroup is of Gevrey class δ for every δ > 1/2θ, for each θ in (0, 1/2).
  • The semigroup is analytic for θ = 1/2.
  • The semigroup is of Gevrey class δ for every δ > 1/2(1 — θ), for each θ in (1/2, 1).

Next, we analyze the point spectrum, and derive the optimality of our regularity results. We also prove that the semigroup is not differentiable for θ = 0 or θ = 1. Those results strongly improve upon some recent results presented in Ammari et al. [J. Evol. Equ. 21 (2021) 4973-5002].

DOI : 10.1051/cocv/2022042
Classification : 35Q74, 35B35, 35B65, 47D06
Keywords: Regularity, stability, fractional damping, interacting elastic systems
@article{COCV_2022__28_1_A46_0,
     author = {Kuang, Zhaobin and Liu, Zhuangyi and Tebou, Louis},
     title = {Optimal semigroup regularity for velocity coupled elastic systems: a degenerate fractional damping case},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022042},
     mrnumber = {4448809},
     zbl = {1496.35380},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022042/}
}
TY  - JOUR
AU  - Kuang, Zhaobin
AU  - Liu, Zhuangyi
AU  - Tebou, Louis
TI  - Optimal semigroup regularity for velocity coupled elastic systems: a degenerate fractional damping case
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022042/
DO  - 10.1051/cocv/2022042
LA  - en
ID  - COCV_2022__28_1_A46_0
ER  - 
%0 Journal Article
%A Kuang, Zhaobin
%A Liu, Zhuangyi
%A Tebou, Louis
%T Optimal semigroup regularity for velocity coupled elastic systems: a degenerate fractional damping case
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022042/
%R 10.1051/cocv/2022042
%G en
%F COCV_2022__28_1_A46_0
Kuang, Zhaobin; Liu, Zhuangyi; Tebou, Louis. Optimal semigroup regularity for velocity coupled elastic systems: a degenerate fractional damping case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 46. doi: 10.1051/cocv/2022042

[1] F. Ammar-Khodja, A. Bader and A. Benabdallah, Dynamic stabilization of systems via decoupling techniques. ESAIM: COCV 4 (1999) 577–593. | MR | Zbl | Numdam

[2] K. Ammari, F. Shel and L Tebou, Regularity and stability of the semigroup associated with some interacting elastic systems I: a degenerate damping case. J. Evol. Equ. 21 (2021) 4973–5002. | MR | Zbl | DOI

[3] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 306 (1988), 837–852. | MR | Zbl | DOI

[4] A. Borichev and Y. Tomilov, Optimal polynormial decay of functions and operator semigroups. Math. Ann. 347 (2010) 455–478. | MR | Zbl | DOI

[5] H. Brezis, Analyse fonctionnelle. Theorie et Applications. Masson, Paris (1983). | MR | Zbl

[6] C. Bright, The Quartic Formula Derivation, Technical Report, University of Waterloo (2012). Available at https://cs.uwaterloo.ca/~cbright/reports/quartic-derivation.pdf.

[7] G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping. Quart. Appl. Math. 39 (1981/82) 433–454. | MR | Zbl | DOI

[8] S. Chen and R. Triggiani, Proof of extension of two conjectures on structural damping for elastic systems. Pacific J. Math. 136 (1989) 15–55. | MR | Zbl | DOI

[9] S. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: the case 0 < α < 1 2 . Proc. AMS 110 (1990) 401–415. | MR | Zbl

[10] R. Denk and R. Racke, L p -resolvent estimates and time decay for generalized thermoelastic plate equations. Electron. J. Diff. Eqs. 48 (2006) 1–16. | MR | Zbl

[11] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer (2000). | MR | Zbl

[12] A. Haraux, Une remarque sur la stabilisation de certains systemes du deuxieme ordre en temps. Port. Math. 46 (1989) 245–258. | MR | Zbl

[13] A. Haraux (on ResearchGate), Avant Internet, pp. 36–41.

[14] F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1 (1985) 43–56. | MR | Zbl

[15] F. Huang, On the holomorphic property of the semigroup associated with linear elastic systems with structural damping. Acta Math. Sci. (English Ed.) 5 (1985) 271-277. | MR

[16] F. Huang, On the mathematical model for linear elastic systems with analytic damping. SIAM J. Control Optim. 26 (1988) 714–724. | MR | Zbl | DOI

[17] F. Huang and K. Liu, Holomorphic property and exponential stability of the semigroup associated with linear elastic systems with damping. Ann. Diff. Eqs. 4 (1988) 411–424. | MR | Zbl

[18] J. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations, ZAMP 64 (2013) 1145–1159. | MR | Zbl

[19] J. Hao, Z. Liu and J. Yong, Regularity analysis for an abstract system of coupled hyperbolic and parabolic equations. J. Differ. Equ. 259 (2015) 4763–4798. | MR | Zbl | DOI

[20] I. Lasiecka and R. Triggiani, Factor spaces and implications on Kirchhoff equations with clamped boundary conditions. Abstr. Appl. Anal. 6 (2001) 441–488. | MR | Zbl | DOI

[21] K. Liu and Z. Liu, Analyticity and differentiability of semigroups associated with elastic systems with damping and gyroscopic forces. J. Differ. Equ. 141 (1997) 340–355. | MR | Zbl | DOI

[22] Z. Liu and J. Yong, Qualitative properties of certain C 0 semigroups arising in elastic systems with various dampings. Adv. Diff. Equ. 3 (1998) 643–686. | MR | Zbl

[23] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems. Chapman and Hall/CRC (1999). | MR | Zbl

[24] B. E. Meserve, Fundamental Concepts of Algebra. Cambridge, Addison-Wesley (1953).

[25] J. E. Munoz Rivera and R. Racke, Large solutions and smoothing properties for nonlinear thermoelastic systems. J. Differential Equ. 127 (1996) 454–483. | MR | Zbl | DOI

[26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). | MR | Zbl | DOI

[27] J. Prüss, On the spectrum of C 0 -semigroups. Trans. Am. Math. Soc. 284 (1984) 847–857. | MR | Zbl

[28] S. Taylor, Ph.D. Thesis, Chapter "Gevrey semigroups", School of Mathematics, University of Minnesota (1989).

Cité par Sources :