Mathematical analysis of a coupling method for the practical computation of homogenized coefficients
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 44

We present the mathematical study of a computational approach originally introduced by R. Cottereau [Int. J. Numer. Meth. Eng. 95 (2013) 71-90]. The approach aims at evaluating the effective (a.k.a. homogenized) coefficient of a medium with some fine-scale structure. It combines, using the Arlequin coupling method, the original fine-scale description of the medium with an effective description and optimizes upon the coefficient of the effective medium to best fit the response of an equivalent purely homogeneous medium. We prove here that the approach is mathematically well-posed and that it provides, under suitable assumptions, the actual value of the homogenized coefficient of the original medium in the limit of asymptotically infinitely fine structures. The theory presented here therefore usefully complements our numerical developments of Gorynina et al. [SIAM J. Sci. Comput. 43 (2021) A1273-A1304].

DOI : 10.1051/cocv/2022035
Classification : 35J, 35B27, 74Q15
Keywords: Elliptic PDEs, oscillatory coefficients, homogenization, coarse-graining
@article{COCV_2022__28_1_A44_0,
     author = {Gorynina, Olga and Le Bris, Claude and Legoll, Fr\'ed\'eric},
     title = {Mathematical analysis of a coupling method for the practical computation of homogenized coefficients},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022035},
     mrnumber = {4446536},
     zbl = {1497.35135},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022035/}
}
TY  - JOUR
AU  - Gorynina, Olga
AU  - Le Bris, Claude
AU  - Legoll, Frédéric
TI  - Mathematical analysis of a coupling method for the practical computation of homogenized coefficients
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022035/
DO  - 10.1051/cocv/2022035
LA  - en
ID  - COCV_2022__28_1_A44_0
ER  - 
%0 Journal Article
%A Gorynina, Olga
%A Le Bris, Claude
%A Legoll, Frédéric
%T Mathematical analysis of a coupling method for the practical computation of homogenized coefficients
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022035/
%R 10.1051/cocv/2022035
%G en
%F COCV_2022__28_1_A44_0
Gorynina, Olga; Le Bris, Claude; Legoll, Frédéric. Mathematical analysis of a coupling method for the practical computation of homogenized coefficients. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 44. doi: 10.1051/cocv/2022035

[1] G. Allaire, Shape Optimization by the Homogenization Method, vol. 146 of Applied Mathematical Sciences. Springer, New York (2002). | MR | Zbl | DOI

[2] A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments, in W. Bao and Q. Du (editors), Multiscale modeling and analysis for materials simulation. Vol. 22 of Lect. Notes Series, Institute for Mathematical Sciences, National University of Singapore. World Sci. Publ. (2011) 197–272. | MR

[3] H. Ben Dhia, Multiscale mechanical problems: the Arlequin method. C.R. Acad. Sci. Paris 12 (1998) 899–904. | Zbl

[4] H. Ben Dhia, Further insights by theoretical investigations of the multiscale Arlequin method. Int. J. Multiscale Comput. Engng. 6 (2008) 215–232. | DOI

[5] H. Ben Dhia and G. Rateau, The Arlequin method as a flexible engineering design tool. Int. J. Numer. Meth. Engng. 62 (2005) 1442–1462. | Zbl | DOI

[6] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. Vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York (1978). | MR | Zbl

[7] A. Bourgeat, M. Quintard and S. Whitaker, Eléments de comparaison entre la méthode d’homogénéisation et la méthode de prise de moyenne avec fermeture [Comparison between homogenization theory and volume averaging method with closure problem]. C. R. Acad. Sci. Paris, Série II 306 (1988) 463–466. | MR | Zbl

[8] D. Cioranescu and P. Donato, An introduction to homogenization. Vol. 17 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, New York (1999). | MR | Zbl

[9] R. Cottereau, Numerical strategy for unbiased homogenization of random materials. Int. J. Numer. Meth. Engng. 95 (2013) 71–90. | MR | Zbl | DOI

[10] R. Cottereau, D. Clouteau, H. Ben Dhia and C. Zaccardi, A stochastic-deterministic coupling method for continuum mechanics. Comput. Methods Appl. Mech. Engrg. 200 (2011) 3280–3288. | MR | Zbl | DOI

[11] L. J. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27 (1991) 699–708. | DOI

[12] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Springer (2015). | MR

[13] O. Gorynina, C. Le Bris and F. Legoll, Some remarks on a coupling method for the practical computation of homogenized coefficients. SIAM J. Sci. Comput. 43 (2021) A1273–A1304. | MR | Zbl | DOI

[14] V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of differential operators and integral functional. Springer-Verlag, Berlin (1994). | MR | DOI

[15] C. Le Bris, F. Legoll and S. Lemaire, On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators. ESAIM: COCV 24 (2018) 1345–1380. | MR | Zbl | Numdam

[16] C. Le Bris, F. Legoll and K. Li, Approximation grossière d’un problème elliptique à coefficients hautement oscillants [Coarse approximation of an elliptic problem with highly oscillatory coefficients]. C.R. Acad. Sci. Paris, Serie I 351 (2013) 265–270. | MR | Zbl | DOI

[17] C. Le Bris, F. Legoll and A. Lozinski, MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems. Chin. Ann. Math. Ser. B 34 (2013) 113–138. | MR | Zbl | DOI

[18] Y. Li and L. Nirenberg, Estimates for elliptic systems from composite material. Commun. Pure Appl. Math. 56 (2003) 892–925. | MR | Zbl | DOI

[19] J. M. Melenk, h p -Interpolation of nonsmooth functions and an application to h p -a posteriori error estimation. SIAM J. Numer. Anal. 43 (2005) 127–155. | MR | Zbl | DOI

[20] G. Rateau, Méthode Arlequin pour les problèmes mécaniques multi-échelles: Applications à des problèmes de jonction et de fissuration de structures élancées, Ph.D. thesis, Ecole Centrale de Paris (2003). Available at http://www.theses.fr/2003ECAP0915.

[21] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | MR | Zbl | DOI

[22] L. Tartar, The general theory of homogenization - a personalized introduction. Vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer-Verlag, Berlin Heidelberg (2010). | MR | Zbl | DOI

Cité par Sources :