Dynamic programming principle and Hamilton-Jacobi-Bellman equation under nonlinear expectation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 25

In this paper, we study a stochastic recursive optimal control problem in which the value functional is defined by the solution of a backward stochastic differential equation (BSDE) under G-expectation. Under standard assumptions, we establish the comparison theorem for this kind of BSDE and give a novel and simple method to obtain the dynamic programming principle. Finally, we prove that the value function is the unique viscosity solution to a type of fully nonlinear HJB equation.

DOI : 10.1051/cocv/2022019
Classification : 93E20, 60H10, 35K15
Keywords: Dynamic programming principle, Hamilton-Jacobi-Bellman equation, Stochastic recursive optimal control, Backward stochastic differential equation
@article{COCV_2022__28_1_A25_0,
     author = {Hu, Mingshang and Ji, Shaolin and Li, Xiaojuan},
     title = {Dynamic programming principle and {Hamilton-Jacobi-Bellman} equation under nonlinear expectation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022019},
     mrnumber = {4429405},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022019/}
}
TY  - JOUR
AU  - Hu, Mingshang
AU  - Ji, Shaolin
AU  - Li, Xiaojuan
TI  - Dynamic programming principle and Hamilton-Jacobi-Bellman equation under nonlinear expectation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022019/
DO  - 10.1051/cocv/2022019
LA  - en
ID  - COCV_2022__28_1_A25_0
ER  - 
%0 Journal Article
%A Hu, Mingshang
%A Ji, Shaolin
%A Li, Xiaojuan
%T Dynamic programming principle and Hamilton-Jacobi-Bellman equation under nonlinear expectation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022019/
%R 10.1051/cocv/2022019
%G en
%F COCV_2022__28_1_A25_0
Hu, Mingshang; Ji, Shaolin; Li, Xiaojuan. Dynamic programming principle and Hamilton-Jacobi-Bellman equation under nonlinear expectation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 25. doi: 10.1051/cocv/2022019

[1] R. Buckdahn and Y. Hu, Probabilistic interpretation of a coupled system of Hamilton-Jacobi-Bellman equations. J. Evol. Equ. 10 (2010) 529–549. | MR | DOI

[2] R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions for Hamilton-Jacobi-Bellman-Isaacs equations. SIAM J. Control Optim. 47 (2008) 444–475. | MR | DOI

[3] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1–67. | MR | DOI

[4] L. Denis, M. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal. 34 (2011) 139–161. | MR | DOI

[5] L. Denis and C. Martini, A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16 (2006) 827–852. | MR | DOI

[6] L. Denis and K. Kervarec, Optimal investment under model uncertainty in non-dominated models. SIAM J. Control Optim. 51 (2013) 1803–1822. | MR | DOI

[7] N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. | MR | DOI

[8] L. Epstein and S. Ji, Ambiguous volatility, possibility and utility in continuous time. J. Math. Econom. 50 (2014) 269–282. | MR | DOI

[9] L. Epstein and S. Ji, Ambiguous volatility and asset pricing in continuous time. Rev. Financ. Stud. 26 (2013) 1740–1786. | DOI

[10] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions. Springer (1992). | MR

[11] M. Hu and S. Ji, Dynamic programming principle for stochastic recursive optimal control problem driven by a G -Brownian motion. Stoch. Process. Appl. 127 (2017) 107–134. | MR | DOI

[12] M. Hu, S. Ji, S. Peng and Y. Song, Backward stochastic differential equations driven by G -Brownian motion. Stochastic Process. Appl. 124 (2014) 759–784. | MR | DOI

[13] M. Hu, S. Ji, S. Peng and Y. Song, Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G -Brownian motion. Stochastic Process. Appl. 124 (2014) 1170–1195. | MR | DOI

[14] M. Hu, S. Ji and X. Xue, The existence and uniqueness of viscosity solution to a kind of Hamilton-Jacobi-Bellman equation. SIAM J. Control Optim. 57 (2019) 3911–3938. | MR | DOI

[15] M. Hu and S. Peng, On representation theorem of G -expectations and paths of G -Brownian motion. Acta Math. Appl. Sin. Engl. Ser. 25 (2009) 539–546. | MR | DOI

[16] M. Hu, F. Wang and G. Zheng, Quasi-continuous random variables and processes under the G -expectation framework. Stoch. Process. Appl. 126 (2016) 2367–2387. | MR | DOI

[17] J. Li and Q. Wei, Optimal control problems of fully coupled FBSDEs and viscosity solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 52 (2014) 1622–1662. | MR | DOI

[18] A. Matoussi, D. Possamai and C. Zhou, Robust Utility maximization in non-dominated models with 2BSDEs. Math. Finance 25 (2015) 258–287. | MR | DOI

[19] J. Ma, P. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly - a four step scheme. Probab. Theory Related Fields 98 (1994) 339–359. | MR | DOI

[20] J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications, Lect. Notes Math. Springer (1999).

[21] S. Peng, Nonlinear expectations and nonlinear Markov chains. Chin. Ann. Math. 26B (2005) 159–184. | MR | DOI

[22] S. Peng, G -expectation, G -Brownian Motion and Related Stochastic Calculus of Ito type. Stochastic analysis and applications, Abel Symp., Vol. 2, Springer, Berlin (2007) 541–567. | MR

[23] S. Peng, Multi-dimensional G -Brownian motion and related stochastic calculus under G -expectation. Stochastic Process. Appl. 118 (2008) 2223–2253. | MR | DOI

[24] S. Peng, A generalized dynamic programming principle and Hamilton-Jacobi-Bellmen equation. Stoch. Stoch. Rep. 38 (1992) 119–134. | MR | DOI

[25] S. Peng, Backward stochastic differential equations—stochastic optimization theory and viscosity solutions of HJB equations, in Topics on Stochastic Analysis, edited by J. Yan, S. Peng, S. Fang, and L. Wu. Science Press, Beijing (1997) 85–138 (in Chinese).

[26] S. Peng, Nonlinear Expectations and Stochastic Calculus under Uncertainty. Springer (2019). | MR

[27] T. Pham and J. Zhang, Two person zero-sum game in weak formulation and path dependent Bellman-Isaacs equation. SIAM J. Control Optim. 52 (2014) 2090–2121. | MR | DOI

[28] H. M. Soner, N. Touzi and J. Zhang, Wellposedness of second order backward SDEs. Probab. Theory Related Fields 153 (2012) 149–190. | MR | DOI

[29] S. Tang, Dynamic programming for general linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 53 (2015) 1082–1106. | MR | DOI

[30] Z. Wu and Z. Yu, Probabilistic interpretation for a system of quasilinear parabolic partial differential equation combined with algebra equations. Stochastic Process. Appl. 124 (2014) 3921–3947. | MR | DOI

[31] J. Yong and X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations. Springer (1999). | MR | DOI

Cité par Sources :