Irreducibility of Kuramoto-Sivashinsky equation driven by degenerate noise
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 20

In this paper, we study irreducibility of Kuramoto-Sivashinsky equation which is driven by an additive noise acting only on a finite number of Fourier modes. In order to obtain the irreducibility, we first investigate the approximate controllability of Kuramoto-Sivashinsky equation driven by a finite-dimensional force, the proof is based on Agrachev-Sarychev type geometric control approach. Next, we study the continuity of solving operator for deterministic Kuramoto-Sivashinsky equation. Finally, combining the approximate controllability with continuity of solving operator, we establish the irreducibility of Kuramoto-Sivashinsky equation.

DOI : 10.1051/cocv/2022014
Classification : 60H15
Keywords: Irreducibility, Kuramoto-Sivashinsky equation, degenerate noise, approximate controllability, Agrachev-Sarychev method
@article{COCV_2022__28_1_A20_0,
     author = {Gao, Peng},
     title = {Irreducibility of {Kuramoto-Sivashinsky} equation driven by degenerate noise},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022014},
     mrnumber = {4388378},
     zbl = {1485.60059},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022014/}
}
TY  - JOUR
AU  - Gao, Peng
TI  - Irreducibility of Kuramoto-Sivashinsky equation driven by degenerate noise
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022014/
DO  - 10.1051/cocv/2022014
LA  - en
ID  - COCV_2022__28_1_A20_0
ER  - 
%0 Journal Article
%A Gao, Peng
%T Irreducibility of Kuramoto-Sivashinsky equation driven by degenerate noise
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022014/
%R 10.1051/cocv/2022014
%G en
%F COCV_2022__28_1_A20_0
Gao, Peng. Irreducibility of Kuramoto-Sivashinsky equation driven by degenerate noise. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 20. doi: 10.1051/cocv/2022014

[1] R. A. Adams and J. J. F. Fournier, Sobolev spaces. Elsevier (2003). | MR | Zbl

[2] A. Armaou and P. D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation. Physica D 137 (2000) 49–61. | MR | Zbl | DOI

[3] A. A. Agrachev and A. V. Sarychev, Navier-Stokes equations: controllability by means of low modes forcing. J. Math. Fluid Mech. 7 (2005) 108–152. | MR | Zbl | DOI

[4] A. A. Agrachev and A. V. Sarychev, Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing. Commun. Math. Phys. 265 (2006) 673–697. | MR | Zbl | DOI

[5] A. Agrachev and A. Sarychev, Solid controllability in fluid dynamics. In Instability in Models Connected with Fluid Flows. I, Int. Math. Ser. (N.Y.). Springer, New York (2008) 1–35. | MR | Zbl

[6] V. Barbu, The irreducibility of transition semigroups and approximate controllability. Stochastic Partial Differential Equations and Applications-VII (2005) 21. | MR | Zbl

[7] V. Barbu and G. Da Prato, Irreducibility of the transition semigroup associated with the two phase Stefan problem. Variational Analysis and Applications. Springer, Boston, MA (2005) 147–59. | MR | Zbl | DOI

[8] V. Barbu and G. Da Prato, Irreducibility of the transition semigroup associated with the stochastic obstacle problem. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 (2005) 397–406. | MR | Zbl | DOI

[9] L. Bo and Y. Jiang, Large deviation for the nonlocal Kuramoto-Sivashinsky SPDE. Nonlinear Analysis: Theory Methods Appl. 82 (2013) 100–114. | MR | Zbl | DOI

[10] L. Bo, K. Shi and Y. Wang, On a nonlocal stochastic Kuramoto-Sivashinsky equation with jumps. Stochastics Dyn. 7 (2007) 439–457. | MR | Zbl | DOI

[11] P. M. Boulvard, P. Gao and V. Nersesyan, Controllability and ergodicity of 3D primitive equations driven by a finite-dimensionalforce (2020). | Zbl

[12] N. Carreño and M. C. Santos, Stackelberg-Nash exact controllability for the Kuramoto-Sivashinsky equation. J. Differ. Equ. 266 (2019) 6068–6108. | MR | Zbl | DOI

[13] C. M. Cazacu, L. I. Ignat and A. F. Pazoto, Null-controllability of the linear Kuramoto–Sivashinsky equation on star-shaped trees. SIAM J. Control Optim. 56 (2018) 2921–2958. | MR | Zbl | DOI

[14] E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation. J. Differ. Equ. 250 (2011) 2024–2044. | MR | Zbl | DOI

[15] E. Cerpa, P. Guzmán and A. Mercado, On the control of the linear Kuramoto-Sivashinsky equation. ESAIM: COCV 23 (2017) 165–194. | MR | Zbl | Numdam

[16] P. Collet, J. P. Eckmann, H. Epstein, et al., A global attracting set for the Kuramoto-Sivashinsky equation. Commun. Math. Phys. 152 (1993) 203–214. | MR | Zbl | DOI

[17] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press (2014). | MR | Zbl | DOI

[18] Z. Dong, F. Y. Wang and L. Xu, Irreducibility and asymptotics of stochastic Burgers equation driven by α −stable processes. Potential Anal. 52 (2020) 371–392. | MR | Zbl | DOI

[19] J. Duan and V. J. Ervin, On the stochastic Kuramoto-Sivashinsky equation. Nonlinear Analysis: Theory Methods Appl. 44 (2001) 205–216. | MR | Zbl | DOI

[20] J. Duan and V. J. Ervin, Dynamics of a nonlocal Kuramoto-Sivashinsky equation. J. Differ. Equ. 143 (1998) 243–266. | MR | Zbl | DOI

[21] S. Dubljevic, Boundary model predictive control of Kuramoto-Sivashinsky equation with input and state constraints. Comput. Chem. Eng. 34 (2010) 1655–61. | DOI

[22] B. Ferrario, Invariant measures for a stochastic Kuramoto-Sivashinsky equation. Stoch. Anal. Appl. 26 (2008) 379–407. | MR | Zbl | DOI

[23] F. Flandoli, Irreducibility of the 3-D stochastic Navier-Stokes equation. J. Funct. Anal. 149 (1997) 160–177. | MR | Zbl | DOI

[24] F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Commun. Math. Phys. 172 (1995) 119–141. | MR | Zbl | DOI

[25] P. Gao, Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation. Evol. Equ. Control Theory 4 (2015) 281–296. | MR | Zbl | DOI

[26] P. Gao, Global Carleman estimates for the linear stochastic Kuramoto-Sivashinsky equations and their applications. J. Math. Anal. Appl. 464 (2018) 725–748. | MR | Zbl | DOI

[27] P. Gao, Null controllability with constraints on the state for the linear stochastic Kuramoto-Sivashinsky equation. Physica A (2020). | MR

[28] P. Gao, Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation. Evol. Equ. Control Theory 9 (2020) 181–191. | MR | Zbl | DOI

[29] P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem. Nonlinear Anal. Theory Methods Appl. (2015) 133–147. | MR | Zbl | DOI

[30] P. Gao, Optimal distributed control of the Kuramoto-Sivashinsky equation with pointwise state and mixed control-state constraints. IMA J. Math. Control Inf. 33 (2016) 791–811. | MR | Zbl | DOI

[31] P. Gao, Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discr. Continu. Dyn. Syst. 38 (2018) 5649. | MR | Zbl | DOI

[32] J. Goodman, Stability of the kuramoto-sivashinsky and related systems. Commun. Pure Appl. Math. 47 (1994) 293–306. | MR | Zbl | DOI

[33] S. Kuksin and A. Shirikyan, Mathematics of two-dimensional turbulence. Cambridge University Press (2012). | MR | Zbl | DOI

[34] Y. Kuramoto, Diffusion-induced chaos in reaction systems. Suppl. Prog. Theor. Phys. 64 (1978) 346–367. | DOI

[35] Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems. Theor. Phys. 54 (1975) 687–699. | DOI

[36] Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55 (1976) 356–369. | DOI

[37] V. Nersesyan, Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension. Math. Control Related Fields 11 (2021) 237. | MR | Zbl | DOI

[38] V. Nersesyan, Approximate controllability of Lagrangian trajectories of the 3D Navier-Stokes system by a finite-dimensional force. Nonlinearity 28 (2015) 825–848. | MR | Zbl | DOI

[39] B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations. Commun. Partial Differ. Equ. 14 (1989) 245–297. | MR | Zbl | DOI

[40] A. Sarychev, Controllability of the cubic Schroedinger equation via a low-dimensional source term. Math. Control Related Fields 4 (2014) 261. | MR | Zbl | DOI

[41] G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I. Derivation of basic equations. Acta Astronaut. 4 (1977) 1177–1206. | MR | Zbl | DOI

[42] R. Temam and X. M. Wang, Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case. Differ. Integr. Equ. 7 (1994) 1095–1108. | MR | Zbl

[43] R. Wang, J. Xiong and L. Xu, Irreducibility of stochastic real Ginzburg-Landau equation driven by α -stable noises and applications. Bernoulli 23 (2017) 1179–1201. | MR | Zbl | DOI

[44] K. Yamazaki, Irreducibility of the three, and two and a half dimensional Hall-magnetohydrodynamics system. Physica D (2020). | MR | Zbl

[45] D. Yang, Dynamics for the stochastic nonlocal Kuramoto-Sivashinsky equation. J. Math. Anal. Appl. 330 (2007) 550–70. | MR | Zbl | DOI

[46] D. Yang, Random attractors for the stochastic Kuramoto-Sivashinsky equation. Stoch. Anal. Appl. 24 (2006) 1285–1303. | MR | Zbl | DOI

Cité par Sources :