Let M be a differentiable manifold, T$$M be its tangent space at x ∈ M and TM = {(x, y);x ∈ M;y ∈ T$$M} be its tangent bundle. A C0-Finsler structure is a continuous function F : TM → [0, ∞) such that F(x, ⋅) : T$$M → [0, ∞) is an asymmetric norm. In this work we introduce the Pontryagin type C0-Finsler structures, which are structures that satisfy the minimum requirements of Pontryagin’s maximum principle for the problem of minimizing paths. We define the extended geodesic field ℰ on the slit cotangent bundle T*M\0 of (M, F), which is a generalization of the geodesic spray of Finsler geometry. We study the case where ℰ is a locally Lipschitz vector field. We show some examples where the geodesics are more naturally represented by ℰ than by a similar structure on TM. Finally we show that the maximum of independent Finsler structures is a Pontryagin type C0-Finsler structure where ℰ is a locally Lipschitz vector field.
Keywords: Geodesic field, extended geodesic field, cotangent bundle, Pontryagin’s maximum principle, Finsler structure, $$0-Finsler structure
@article{COCV_2022__28_1_A19_0,
author = {Rodrigues, Hugo Murilo and Fukuoka, Ryuichi},
title = {Geodesic fields for {Pontryagin} type $C^0${-Finsler} manifolds},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2022},
publisher = {EDP-Sciences},
volume = {28},
doi = {10.1051/cocv/2022013},
mrnumber = {4387182},
zbl = {1485.49027},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2022013/}
}
TY - JOUR AU - Rodrigues, Hugo Murilo AU - Fukuoka, Ryuichi TI - Geodesic fields for Pontryagin type $C^0$-Finsler manifolds JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2022 VL - 28 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2022013/ DO - 10.1051/cocv/2022013 LA - en ID - COCV_2022__28_1_A19_0 ER -
%0 Journal Article %A Rodrigues, Hugo Murilo %A Fukuoka, Ryuichi %T Geodesic fields for Pontryagin type $C^0$-Finsler manifolds %J ESAIM: Control, Optimisation and Calculus of Variations %D 2022 %V 28 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2022013/ %R 10.1051/cocv/2022013 %G en %F COCV_2022__28_1_A19_0
Rodrigues, Hugo Murilo; Fukuoka, Ryuichi. Geodesic fields for Pontryagin type $C^0$-Finsler manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 19. doi: 10.1051/cocv/2022013
[1] , and , Curvature: a variational approach. Mem. Amer. Math. Soc. 256 (2018) v+142. | MR | Zbl
[2] and , Feedback-invariant optimal control theory and differential geometry. I. Regular extremals. J. Dyn. Control Systems 3 (1997) 343–389. | MR | Zbl | DOI
[3] , and , A comprehensive introduction to sub-Riemannian geometry. From the Hamiltonian viewpoint, With an appendix by Igor Zelenko. Vol. 181 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2020). | MR | Zbl
[4] and , Optimal transportation under nonholonomic constraints. Trans. Amer. Math. Soc. 361 (2009) 6019–6047. | MR | Zbl | DOI
[5] , and , Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. Ann. Inst. Fourier (Grenoble) 69 (2019) 1187–1228. | MR | Zbl | Numdam | DOI
[6] and , Control theory from the geometric viewpoint. Vol. 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin (2004). | MR | Zbl
[7] , and , A sub-Finsler problem on the Cartan group. Tr. Mat. Inst. Steklova 304 (2019) 49–67. | Zbl | MR
[8] , and , Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry. ESAIM: COCV 27 (2021) 52. | MR | Zbl
[9] , and , An introduction to Riemann-Finsler geometry. Vol. 200 of Graduate Texts in Mathematics. Springer-Verlag, New York (2000). | MR | Zbl | DOI
[10] , , , and , On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures. J. Math. Pures Appl. (9) 133 (2020) 118–138. | MR | Zbl | DOI
[11] and , Comparison theorems for conjugate points in sub-Riemannian geometry. ESAIM: COCV 22 (2016) 439–472. | MR | Zbl | Numdam
[12] , , and , Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions. J. Dyn. Control Syst. 23 (2017) 547–575. | MR | Zbl | DOI
[13] and , Sub-Riemannian interpolation inequalities. Invent. Math. 215 (2019) 977–1038. | MR | Zbl | DOI
[14] , Homogeneous manifolds with an intrinsic metric. I. Sibirsk. Mat. Zh. 29 (1988) 17–29. | Zbl | MR
[15] , Homogeneous manifolds with an intrinsic metric. II. Sibirsk. Mat. Zh. 30 (1989) 14–28, 225. | MR | Zbl
[16] and , Extremals of a left-invariant sub-Finsler metric on the Engel group. Sibirsk. Mat. Zh. 61 (2020) 735–751. | Zbl | MR
[17] and , Invariant Carnot-Caratheodory metrics on , and lens spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. | MR | Zbl | DOI
[18] , and , A course in metric geometry. Vol. 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001). | MR | Zbl | DOI
[19] , Functional analysis in asymmetric normed spaces. Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel (2013). | MR | Zbl | DOI
[20] , and , Sequence of induced Hausdorff metrics on Lie groups. Bull. Braz. Math. Soc. (N.S.) 51 (2020) 509–530. | MR | Zbl
[21] , A large family of projectively equivalent -Finsler manifolds. Tohoku Math. J. 72 (2020) 725–750. | MR | Zbl | DOI
[22] and , Mollifier smoothing of -Finsler structures. Ann. Mat. Pura Appl. (4) 200 (2021) 595–639. | MR | Zbl | DOI
[23] , The quasihyperbolic plane. Sibirsk. Mat. Zh. 40 (1999) 288–301, ii. | Zbl | MR
[24] , Infinite geodesics and isometric embeddings in Carnot groups of step 2. SIAM J. Control Optim. 58 (2020) 447–461. | MR | Zbl | DOI
[25] and , Fundamentals of convex analysis. Grundlehren Text Editions. Springer-Verlag, Berlin (2001). Abridged version of ıt Convex analysis and minimization algorithms. I [Springer, Berlin, 1993; MR1261420 (95m:90001)] and ıt II [ibid.; MR1295240 (95m:90002)]. | MR | Zbl
[26] , Displacement interpolations from a Hamiltonian point of view. J. Funct. Anal. 265 (2013) 3163–3203. | MR | Zbl | DOI
[27] , Convex trigonometry with applications to sub-Finsler geometry. (2020). | arXiv | MR
[28] and , The Binet-Legendre metric in Finsler geometry. Geom. Topol. 16 (2012) 2135–2170. | MR | Zbl | DOI
[29] , On asymmetric distances. Anal. Geom. Metr. Spaces 1 (2013) 200–231. | MR | Zbl | DOI
[30] , Geodesics in asymmetric metric spaces. Anal. Geom. Metr. Spaces 2 (2014) 115–153. | MR | Zbl
[31] , On the curvature and heat flow on Hamiltonian systems. Anal. Geom. Metr. Spaces 2 (2014) 81–114. | MR | Zbl
[32] , , and , The mathematical theory of optimal processes, Translated by . A Pergamon Press Book. The Macmillan Co., New York (1964). | MR
[33] , Real analysis, third ed., Macmillan Publishing Company, New York (1988). | MR | Zbl
[34] , Optimal bang-bang trajectories in sub-Finsler problem on the Cartan group. Russ. J. Nonlinear Dyn. 14 (2018) 583–593. | MR | Zbl
[35] , Optimal bang-bang trajectories in sub-Finsler problems on the Engel group. Russ. J. Nonlinear Dyn. 16 (2020) 355–367. | MR | Zbl
[36] , Smoothing of C0-Finsler structures, Ph.D. thesis, State University of Maringá (2019). State University of Maringá, In Portuguese.
[37] , Convex analysis, Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J. (1970). | MR | Zbl
[38] , Foundations of differentiable manifolds and Lie groups. Vol. 94 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin (1983), Corrected reprint of the 1971 edition. | MR | Zbl | DOI
[39] and , Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differ. Geom. Appl. 27 (2009) 723–742. | MR | Zbl | DOI
Cité par Sources :





