Geodesic fields for Pontryagin type C 0 -Finsler manifolds
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 19

Let M be a differentiable manifold, T$$M be its tangent space at xM and TM = {(x, y);xM;yT$$M} be its tangent bundle. A C0-Finsler structure is a continuous function F : TM → [0, ∞) such that F(x, ⋅) : T$$M → [0, ) is an asymmetric norm. In this work we introduce the Pontryagin type C0-Finsler structures, which are structures that satisfy the minimum requirements of Pontryagin’s maximum principle for the problem of minimizing paths. We define the extended geodesic field on the slit cotangent bundle T*M\0 of (M, F), which is a generalization of the geodesic spray of Finsler geometry. We study the case where is a locally Lipschitz vector field. We show some examples where the geodesics are more naturally represented by than by a similar structure on TM. Finally we show that the maximum of independent Finsler structures is a Pontryagin type C0-Finsler structure where is a locally Lipschitz vector field.

DOI : 10.1051/cocv/2022013
Classification : 49J15, 53B40, 53C22
Keywords: Geodesic field, extended geodesic field, cotangent bundle, Pontryagin’s maximum principle, Finsler structure, $$0-Finsler structure
@article{COCV_2022__28_1_A19_0,
     author = {Rodrigues, Hugo Murilo and Fukuoka, Ryuichi},
     title = {Geodesic fields for {Pontryagin} type $C^0${-Finsler} manifolds},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022013},
     mrnumber = {4387182},
     zbl = {1485.49027},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022013/}
}
TY  - JOUR
AU  - Rodrigues, Hugo Murilo
AU  - Fukuoka, Ryuichi
TI  - Geodesic fields for Pontryagin type $C^0$-Finsler manifolds
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022013/
DO  - 10.1051/cocv/2022013
LA  - en
ID  - COCV_2022__28_1_A19_0
ER  - 
%0 Journal Article
%A Rodrigues, Hugo Murilo
%A Fukuoka, Ryuichi
%T Geodesic fields for Pontryagin type $C^0$-Finsler manifolds
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022013/
%R 10.1051/cocv/2022013
%G en
%F COCV_2022__28_1_A19_0
Rodrigues, Hugo Murilo; Fukuoka, Ryuichi. Geodesic fields for Pontryagin type $C^0$-Finsler manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 19. doi: 10.1051/cocv/2022013

[1] A. Agrachev, D. Barilari and L. Rizzi, Curvature: a variational approach. Mem. Amer. Math. Soc. 256 (2018) v+142. | MR | Zbl

[2] A. A. Agrachev and R. V. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry. I. Regular extremals. J. Dyn. Control Systems 3 (1997) 343–389. | MR | Zbl | DOI

[3] A. Agrachev, D. Barilari and U. Boscain, A comprehensive introduction to sub-Riemannian geometry. From the Hamiltonian viewpoint, With an appendix by Igor Zelenko. Vol. 181 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2020). | MR | Zbl

[4] A. Agrachev and P. Lee, Optimal transportation under nonholonomic constraints. Trans. Amer. Math. Soc. 361 (2009) 6019–6047. | MR | Zbl | DOI

[5] A. A. Agrachev, D. Barilari and E. Paoli, Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. Ann. Inst. Fourier (Grenoble) 69 (2019) 1187–1228. | MR | Zbl | Numdam | DOI

[6] A. A. Agrachev and Y. L. Sachkov, Control theory from the geometric viewpoint. Vol. 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin (2004). | MR | Zbl

[7] A. A. Ardentov, È Le Donne and Y. L. Sachkov, A sub-Finsler problem on the Cartan group. Tr. Mat. Inst. Steklova 304 (2019) 49–67. | Zbl | MR

[8] A. A. Ardentov, L. V. Lokutsievskiy and Y. L. Sachkov, Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry. ESAIM: COCV 27 (2021) 52. | MR | Zbl

[9] D. Bao, S.-S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry. Vol. 200 of Graduate Texts in Mathematics. Springer-Verlag, New York (2000). | MR | Zbl | DOI

[10] D. Barilari, Y. Chitour, F. Jean, D. Prandi and M. Sigalotti, On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures. J. Math. Pures Appl. (9) 133 (2020) 118–138. | MR | Zbl | DOI

[11] D. Barilari and L. Rizzi, Comparison theorems for conjugate points in sub-Riemannian geometry. ESAIM: COCV 22 (2016) 439–472. | MR | Zbl | Numdam

[12] D. Barilari, U. Boscain, E. Le Donne and M. Sigalotti, Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions. J. Dyn. Control Syst. 23 (2017) 547–575. | MR | Zbl | DOI

[13] D. Barilari and L. Rizzi, Sub-Riemannian interpolation inequalities. Invent. Math. 215 (2019) 977–1038. | MR | Zbl | DOI

[14] V. N. Berestovskiĭ, Homogeneous manifolds with an intrinsic metric. I. Sibirsk. Mat. Zh. 29 (1988) 17–29. | Zbl | MR

[15] V. N. Berestovskiĭ, Homogeneous manifolds with an intrinsic metric. II. Sibirsk. Mat. Zh. 30 (1989) 14–28, 225. | MR | Zbl

[16] V. N. Berestovskiĭ and I. A. Zubareva, Extremals of a left-invariant sub-Finsler metric on the Engel group. Sibirsk. Mat. Zh. 61 (2020) 735–751. | Zbl | MR

[17] U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S 3 , SO ( 3 ) , SL ( 2 ) , and lens spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. | MR | Zbl | DOI

[18] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry. Vol. 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001). | MR | Zbl | DOI

[19] Ş. Cobzaş, Functional analysis in asymmetric normed spaces. Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel (2013). | MR | Zbl | DOI

[20] N. Cordova, R. Fukuoka and E. A. Neves, Sequence of induced Hausdorff metrics on Lie groups. Bull. Braz. Math. Soc. (N.S.) 51 (2020) 509–530. | MR | Zbl

[21] R. Fukuoka, A large family of projectively equivalent C 0 -Finsler manifolds. Tohoku Math. J. 72 (2020) 725–750. | MR | Zbl | DOI

[22] R. Fukuoka and A. M. Setti, Mollifier smoothing of C 0 -Finsler structures. Ann. Mat. Pura Appl. (4) 200 (2021) 595–639. | MR | Zbl | DOI

[23] I. A. Gribanova, The quasihyperbolic plane. Sibirsk. Mat. Zh. 40 (1999) 288–301, ii. | Zbl | MR

[24] E. Hakavuori, Infinite geodesics and isometric embeddings in Carnot groups of step 2. SIAM J. Control Optim. 58 (2020) 447–461. | MR | Zbl | DOI

[25] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Grundlehren Text Editions. Springer-Verlag, Berlin (2001). Abridged version of ıt Convex analysis and minimization algorithms. I [Springer, Berlin, 1993; MR1261420 (95m:90001)] and ıt II [ibid.; MR1295240 (95m:90002)]. | MR | Zbl

[26] P. W. Y. Lee, Displacement interpolations from a Hamiltonian point of view. J. Funct. Anal. 265 (2013) 3163–3203. | MR | Zbl | DOI

[27] L. V. Lokutsievskiy, Convex trigonometry with applications to sub-Finsler geometry. (2020). | arXiv | MR

[28] V. S. Matveev and M. Troyanov, The Binet-Legendre metric in Finsler geometry. Geom. Topol. 16 (2012) 2135–2170. | MR | Zbl | DOI

[29] A. C. G. Mennucci, On asymmetric distances. Anal. Geom. Metr. Spaces 1 (2013) 200–231. | MR | Zbl | DOI

[30] A. C. G. Mennucci, Geodesics in asymmetric metric spaces. Anal. Geom. Metr. Spaces 2 (2014) 115–153. | MR | Zbl

[31] S.-I. Ohta, On the curvature and heat flow on Hamiltonian systems. Anal. Geom. Metr. Spaces 2 (2014) 81–114. | MR | Zbl

[32] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical theory of optimal processes, Translated by D. E. Brown. A Pergamon Press Book. The Macmillan Co., New York (1964). | MR

[33] H. L. Royden, Real analysis, third ed., Macmillan Publishing Company, New York (1988). | MR | Zbl

[34] Yu. Sachkov, Optimal bang-bang trajectories in sub-Finsler problem on the Cartan group. Russ. J. Nonlinear Dyn. 14 (2018) 583–593. | MR | Zbl

[35] Yu. Sachkov, Optimal bang-bang trajectories in sub-Finsler problems on the Engel group. Russ. J. Nonlinear Dyn. 16 (2020) 355–367. | MR | Zbl

[36] A. M. Setti, Smoothing of C0-Finsler structures, Ph.D. thesis, State University of Maringá (2019). State University of Maringá, In Portuguese.

[37] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J. (1970). | MR | Zbl

[38] F. W. Warner, Foundations of differentiable manifolds and Lie groups. Vol. 94 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin (1983), Corrected reprint of the 1971 edition. | MR | Zbl | DOI

[39] I. Zelenko and C. Li, Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differ. Geom. Appl. 27 (2009) 723–742. | MR | Zbl | DOI

Cité par Sources :