Necessary and sufficient conditions for the nonincrease of scalar functions along solutions to constrained differential inclusions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 13

In this paper, we propose necessary and sufficient conditions for a scalar function to be nonincreasing along solutions to general differential inclusions with state constraints. The problem of determining if a function is nonincreasing appears in the study of stability and safety, typically using Lyapunov and barrier functions, respectively. The results in this paper present infinitesimal conditions that do not require any knowledge about the solutions to the system. Results under different regularity properties of the considered scalar function are provided. This includes when the scalar function is lower semicontinuous, locally Lipschitz and regular, or continuously differentiable.

DOI : 10.1051/cocv/2022008
Classification : 93A10, 26B05
Keywords: Constrained systems, Differential inclusions, Nonincreasing functions, Lyapunov-like functions
@article{COCV_2022__28_1_A13_0,
     author = {Maghenem, Mohamed and Melis, Alessandro and Sanfelice, Ricardo G.},
     title = {Necessary and sufficient conditions for the nonincrease of scalar functions along solutions to constrained differential inclusions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022008},
     mrnumber = {4381946},
     zbl = {1496.34035},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022008/}
}
TY  - JOUR
AU  - Maghenem, Mohamed
AU  - Melis, Alessandro
AU  - Sanfelice, Ricardo G.
TI  - Necessary and sufficient conditions for the nonincrease of scalar functions along solutions to constrained differential inclusions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022008/
DO  - 10.1051/cocv/2022008
LA  - en
ID  - COCV_2022__28_1_A13_0
ER  - 
%0 Journal Article
%A Maghenem, Mohamed
%A Melis, Alessandro
%A Sanfelice, Ricardo G.
%T Necessary and sufficient conditions for the nonincrease of scalar functions along solutions to constrained differential inclusions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022008/
%R 10.1051/cocv/2022008
%G en
%F COCV_2022__28_1_A13_0
Maghenem, Mohamed; Melis, Alessandro; Sanfelice, Ricardo G. Necessary and sufficient conditions for the nonincrease of scalar functions along solutions to constrained differential inclusions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 13. doi: 10.1051/cocv/2022008

[1] A. D. Ames, X. Xu, J. W. Grizzle and P. Tabuada, Control Barrier Function Based Quadratic Programs with Application to Automotive Safety Systems (2018).

[2] J.-P. Aubin, Viability Theory. Birkhauser Boston Inc., Cambridge, MA, USA (1991). | MR | Zbl

[3] J.-P. Aubin and A. Cellina, Vol. 264 of Differential Inclusions: Set-Valued Maps and Viability Theory. Springer Science & Business Media (2012). | MR | Zbl

[4] J.-P. Aubin and H. Frankowska, Set-valued Analysis. Springer Science & Business Media (2009). | MR | Zbl | DOI

[5] A. Bacciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions. ESAIM: COCV 4 (1999) 361–376. | MR | Zbl | Numdam

[6] A. Bacciotti and F. Ceragioli, Nonsmooth Lyapunov functions and discontinuous Carathéodory systems. IFAC Proc. 37 (2004) 841–845. | DOI

[7] R. P. Boas and H. P. Boas, vol. 13 of A Primer of Real Functions, 4th edn., Mathematical Association of America (1996). | MR | Zbl | DOI

[8] F. Clarke, Vol. 264 of Functional analysis, calculus of variations and optimal control. Springer Science & Business Media (2013). | MR | Zbl | DOI

[9] F. H. Clarke, Vol. 5 of Optimization and Nonsmooth Analysis (1990). | MR | Zbl | DOI

[10] F. H. Clarke and Y. S. Ledyaev, Mean value inequalities. Proc. Am. Math. Soc. 122 (1994) 1075–1083. | MR | Zbl | DOI

[11] F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Autom. Control 42 (1997) 1394–1407. | MR | Zbl | DOI

[12] F. H. Clarke, Y. S. Ledyaev and R. J. Stern, Invariance, monotonicity, and applications, in Nonlinear analysis, differential equations and control. Springer (1999) 207–305. | MR

[13] F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, vol. 178, Springer Science & Business Media (2008). | MR | Zbl

[14] F. H. Clarke, R. J. Stern and P. R. Wolenski, Subgradient criteria for monotonicity, the Lipschitz condition, and convexity. Can. J. Math. 45 (1993) 1167–1183. | MR | Zbl | DOI

[15] U. Dini, Lezioni di analisi infinitesimale, vol. 1, 2. Fratelli Nistri (1907). | JFM

[16] P. Glotfelter, J. Cortés and M. Egerstedt, Nonsmooth barrier functions with applications to multi-robot systems. IEEE Control Syst. Lett. 1 (2017) 310–315. | MR | DOI

[17] R. Goebel, R. G. Sanfelice and A. R. Teel, Hybrid dynamical systems: modeling, stability, and robustness. Princeton University Press (2012). | MR | Zbl

[18] R. Kamalapurkar, W. E. Dixon and A. R. Teel, On reduction of differential inclusions and Lyapunov stability. ESAIM: COCV 26 (2020) 24. | MR | Zbl | Numdam

[19] M. Maghenem, A. Melis and R. G. Sanfelice, Monotonicity Along Solutions to Constrained Differential Inclusions, in Proceeding of the 58th IEEE Conference on Decision and Control, Nice, France (2019).

[20] M. Maghenem and R. G. Sanfelice, Characterization of Safety and Conditional Invariance for Nonlinear Systems, in Proceedings of the 2019 American Control Conference (ACC), IEEE (2019) 5039–5044. | DOI

[21] M. Maghenem and R. G. Sanfelice, Characterizations of Safety in Hybrid Inclusions via Barrier Functions, in Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC ’19, ACM, NY, USA (2019) 109–118. | MR | Zbl

[22] M. Maghenem and R. G. Sanfelice, Local Lipschitzness of Reachability Maps for Hybrid Systems with Applications to Safety, in Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, HSCC ’20, Association for Computing Machinery, New York, NY, USA (2020). | MR | Zbl

[23] E. Michael, Continuous selections. I. Ann. Math. (1956) 361–382. | MR | Zbl | DOI

[24] S. Prajna, A. Jadbabaie and G. J. Pappas, A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52 (2007) 1415–1428. | MR | Zbl | DOI

[25] R. T. Rockafellar and J. B. R. Wets, Vol. 317 of Variational Analysis. Springer Science & Business Media (1997). | Zbl

[26] M. D. Rossa, R. Goebel, A. Tanwani and L. Zaccarian, Piecewise structure of Lyapunov functions and densely checked decrease conditions for hybrid Systems. Math. Control Signals and Syst. 33 (2021) 123–149. | MR | Zbl | DOI

[27] R. G. Sanfelice, R. Goebel and A. R. Teel, Invariance principles for hybrid systems with connections to detectability and asymptotic stability. IEEE Trans. Autom. Control 52 (2007) 2282–2297. | MR | Zbl | DOI

[28] E. Sontag and H. Sussmann, Nonsmooth control-Lyapunov functions, in vol. 3 of Proceedings of the 34th IEEE Conference on Decision and Control (CDC). IEEE (1995) 2799–2805.

[29] E. D. Sontag, A Lyapunov-like characterization of asymptotic controllability. SIAM J. Control Optim. 21 (1983) 462–471. | MR | Zbl | DOI

[30] M. Valadier, Entraînement unilatéral, lignes de descente, fonctions lipschitziennes non pathologiques. C.R. Acad. Sci. Paris Sér. I Math 8 (1989) 241–244. | MR | Zbl

Cité par Sources :

Research partially supported by NSF Grants no. ECS-1710621, CNS-1544396, and CNS-2039054, by AFOSR Grants no. FA9550-19-1-0053, FA9550-19-1-0169, and FA9550-20-1-0238, and by CITRIS and the Banatao Institute at the University of California.