We study the sub-Riemannian structure determined by a left-invariant distribution of rank 2 on a step 3 Carnot group of dimension 5. We prove the conjectured cut times of Yu. Sachkov for the sub-Riemannian Cartan problem. Along the proof, we obtain a comparison with the known cut times in the sub-Riemannian Engel group, and a sufficient (generic) condition for the uniqueness of the length minimizer between two points. Hence we reduce the optimal synthesis to solving a certain system of equations in elliptic functions.
Keywords: Cartan group, sub-Riemannian problem, nilpotent approximation, Carnot groups, Euler elastica, optimal synthesis
@article{COCV_2022__28_1_A12_0,
author = {Ardentov, Andrei and Hakavuori, Eero},
title = {Cut time in the {sub-Riemannian} problem on the {Cartan} group},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2022},
publisher = {EDP-Sciences},
volume = {28},
doi = {10.1051/cocv/2022006},
mrnumber = {4379606},
zbl = {1507.53028},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2022006/}
}
TY - JOUR AU - Ardentov, Andrei AU - Hakavuori, Eero TI - Cut time in the sub-Riemannian problem on the Cartan group JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2022 VL - 28 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2022006/ DO - 10.1051/cocv/2022006 LA - en ID - COCV_2022__28_1_A12_0 ER -
%0 Journal Article %A Ardentov, Andrei %A Hakavuori, Eero %T Cut time in the sub-Riemannian problem on the Cartan group %J ESAIM: Control, Optimisation and Calculus of Variations %D 2022 %V 28 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2022006/ %R 10.1051/cocv/2022006 %G en %F COCV_2022__28_1_A12_0
Ardentov, Andrei; Hakavuori, Eero. Cut time in the sub-Riemannian problem on the Cartan group. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 12. doi: 10.1051/cocv/2022006
[1] , and , A comprehensive introduction to sub-Riemannian geometry. from the Hamiltonian viewpoint, With an appendix by Igor Zelenko. Cambridge Studies in Advanced Mathematics, vol. 181, Cambridge University Press, Cambridge (2020). | MR | Zbl
[2] , , and , Sub-Riemannian sphere in Martinet flat case. ESAIM: COCV 2 (1997) 377–448. | MR | Zbl | Numdam
[3] , Controlling of a mobile robot with a trailer and its nilpotent approximation. Regul. Chaotic Dyn. 21 (2016) 775–791. | MR | Zbl | DOI
[4] , Hidden Maxwell stratum in Euler’s elastic problem, Russ. J. Nonlinear Dyn. 15 (2019) 409–414. | MR | Zbl
[5] and , Control of a Mobile Robot with a Trailer Based on Nilpotent Approximation. Autom. Remote Control 82 (2021) 73–92. | Zbl | MR | DOI
[6] and , Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group. Sb. Math. 202 (2011) 1593–1615. | Zbl | MR | DOI
[7] and , Conjugate points in nilpotent sub-Riemannian problem on the Engel group. Sovrem. Mat. Prilozh. No. 82 (2012). J. Math. Sci. (N.Y.) 195 (2013) 369–390. | MR | Zbl | DOI
[8] and , Cut time in sub-Riemannian problem on Engel group. ESAIM: COCV 21 (2015) 958–988. | MR | Zbl | Numdam
[9] , , and , Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups, Regul. Chaotic Dyn. 21 (2016) 759–774. | MR | Zbl | DOI
[10] and , Invariant Carnot-Caratheodory metrics on , and lens spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. | MR | Zbl | DOI
[11] , and , Cut locus and optimal synthesis in sub-Riemannian problem on the Lie group . J. Dyn. Control Syst. 23 (2017) 155–195. | MR | Zbl | DOI
[12] and , The implicit function theorem, Birkhäuser Boston, Inc., Boston, MA (2002). | MR
[13] , , , and , Sard property for the endpoint map on some Carnot groups. Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016) 1639–1666. | MR | Zbl | Numdam | DOI
[14] and , On the Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 and higher. Sb. Math. 209 (2018) 672–713. | MR | Zbl | DOI
[15] , Algorithms and software solving a motion planning problem for nonholonomic five-dimensional control systems. Progr. Syst.: Theory Appl. 3 (2012) 3–29.
[16] , and , Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations. Numer. Math. Theory Methods Appl. 6 (2013) 95–115. | MR | Zbl | DOI
[17] , , and , The mathematical theory of optimal processes, Translated from the Russian by ; edited by . Interscience Publishers John Wiley & Sons, Inc. New York-London (1962). | MR
[18] , Exponential map in the generalized Dido problem. Sb. Math. 194 (2003) 1331–1359. | Zbl | MR | DOI
[19] , Complete description of the Maxwell strata in the generalized Dido problem. Sb. Math. 197 (2006) 901–950. | Zbl | MR | DOI
[20] , Discrete symmetries in the generalized Dido problem. Sb. Math. 197 (2006) 235–257. | Zbl | MR | DOI
[21] , The Maxwell set in the geneealized Dido problem. Sb. Math. 197 (2006) 595–621. | Zbl | MR | DOI
[22] , Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 1018–1039. | MR | Zbl | Numdam
[23] , Conjugate time in the sub-Riemannian problem on the cartan group. J. Dyn. Control Syst. (2021). | MR | Zbl
[24] and , Nonholonomic dynamical systems. Geometry of distributions and variational problems, in Current problems in mathematics. Fundamental directions, Vol. 16 (Russian), Itogi Nauki i Tekhniki, 5–85, 307, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1987). | MR | Zbl
Cité par Sources :
E.H. was supported by the SISSA project DIP_ECC_MATE_CoordAreaMate_0459 – Dipartimenti di Eccellenza 2018 – 2022 (CUP: G91—18000050006).





