Cut time in the sub-Riemannian problem on the Cartan group
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 12

We study the sub-Riemannian structure determined by a left-invariant distribution of rank 2 on a step 3 Carnot group of dimension 5. We prove the conjectured cut times of Yu. Sachkov for the sub-Riemannian Cartan problem. Along the proof, we obtain a comparison with the known cut times in the sub-Riemannian Engel group, and a sufficient (generic) condition for the uniqueness of the length minimizer between two points. Hence we reduce the optimal synthesis to solving a certain system of equations in elliptic functions.

DOI : 10.1051/cocv/2022006
Classification : 22E25, 49K15, 53C17
Keywords: Cartan group, sub-Riemannian problem, nilpotent approximation, Carnot groups, Euler elastica, optimal synthesis
@article{COCV_2022__28_1_A12_0,
     author = {Ardentov, Andrei and Hakavuori, Eero},
     title = {Cut time in the {sub-Riemannian} problem on the {Cartan} group},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022006},
     mrnumber = {4379606},
     zbl = {1507.53028},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022006/}
}
TY  - JOUR
AU  - Ardentov, Andrei
AU  - Hakavuori, Eero
TI  - Cut time in the sub-Riemannian problem on the Cartan group
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022006/
DO  - 10.1051/cocv/2022006
LA  - en
ID  - COCV_2022__28_1_A12_0
ER  - 
%0 Journal Article
%A Ardentov, Andrei
%A Hakavuori, Eero
%T Cut time in the sub-Riemannian problem on the Cartan group
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022006/
%R 10.1051/cocv/2022006
%G en
%F COCV_2022__28_1_A12_0
Ardentov, Andrei; Hakavuori, Eero. Cut time in the sub-Riemannian problem on the Cartan group. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 12. doi: 10.1051/cocv/2022006

[1] A. Agrachev, D. Barilari and U. Boscain, A comprehensive introduction to sub-Riemannian geometry. from the Hamiltonian viewpoint, With an appendix by Igor Zelenko. Cambridge Studies in Advanced Mathematics, vol. 181, Cambridge University Press, Cambridge (2020). | MR | Zbl

[2] A. Agrachev, B. Bonnard, M. Chyba and I. Kupka, Sub-Riemannian sphere in Martinet flat case. ESAIM: COCV 2 (1997) 377–448. | MR | Zbl | Numdam

[3] A. A. Ardentov, Controlling of a mobile robot with a trailer and its nilpotent approximation. Regul. Chaotic Dyn. 21 (2016) 775–791. | MR | Zbl | DOI

[4] A. A. Ardentov, Hidden Maxwell stratum in Euler’s elastic problem, Russ. J. Nonlinear Dyn. 15 (2019) 409–414. | MR | Zbl

[5] A. A. Ardentov and A. P. Mashtakov, Control of a Mobile Robot with a Trailer Based on Nilpotent Approximation. Autom. Remote Control 82 (2021) 73–92. | Zbl | MR | DOI

[6] A. A. Ardentov and Y. L. Sachkov, Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group. Sb. Math. 202 (2011) 1593–1615. | Zbl | MR | DOI

[7] A. A. Ardentov and Y. L. Sachkov, Conjugate points in nilpotent sub-Riemannian problem on the Engel group. Sovrem. Mat. Prilozh. No. 82 (2012). J. Math. Sci. (N.Y.) 195 (2013) 369–390. | MR | Zbl | DOI

[8] A. A. Ardentov and Y. L. Sachkov, Cut time in sub-Riemannian problem on Engel group. ESAIM: COCV 21 (2015) 958–988. | MR | Zbl | Numdam

[9] I. A. Bizyaev, A. V. Borisov, A. A. Kilin and I. S. Mamaev, Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups, Regul. Chaotic Dyn. 21 (2016) 759–774. | MR | Zbl | DOI

[10] U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S 3 , S O ( 3 ) , S L ( 2 ) , and lens spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. | MR | Zbl | DOI

[11] Y. A. Butt, Y. L. Sachkov and A. I. Bhatti, Cut locus and optimal synthesis in sub-Riemannian problem on the Lie group SH ( 2 ) . J. Dyn. Control Syst. 23 (2017) 155–195. | MR | Zbl | DOI

[12] S. G. Krantz and H. R. Parks, The implicit function theorem, Birkhäuser Boston, Inc., Boston, MA (2002). | MR

[13] E. Le Donne, R. Montgomery, A. Ottazzi, P. Pansu and D. Vittone, Sard property for the endpoint map on some Carnot groups. Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016) 1639–1666. | MR | Zbl | Numdam | DOI

[14] L. V. Lokutsievskiĭ and Y. L. Sachkov, On the Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 and higher. Sb. Math. 209 (2018) 672–713. | MR | Zbl | DOI

[15] A. P. Mashtakov, Algorithms and software solving a motion planning problem for nonholonomic five-dimensional control systems. Progr. Syst.: Theory Appl. 3 (2012) 3–29.

[16] A. P. Mashtakov, A. A. Ardentov and Y. L. Sachkov, Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations. Numer. Math. Theory Methods Appl. 6 (2013) 95–115. | MR | Zbl | DOI

[17] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical theory of optimal processes, Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt. Interscience Publishers John Wiley & Sons, Inc. New York-London (1962). | MR

[18] Y. L. Sachkov, Exponential map in the generalized Dido problem. Sb. Math. 194 (2003) 1331–1359. | Zbl | MR | DOI

[19] Y. L. Sachkov, Complete description of the Maxwell strata in the generalized Dido problem. Sb. Math. 197 (2006) 901–950. | Zbl | MR | DOI

[20] Y. L. Sachkov, Discrete symmetries in the generalized Dido problem. Sb. Math. 197 (2006) 235–257. | Zbl | MR | DOI

[21] Y. L. Sachkov, The Maxwell set in the geneealized Dido problem. Sb. Math. 197 (2006) 595–621. | Zbl | MR | DOI

[22] Y. L. Sachkov, Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 1018–1039. | MR | Zbl | Numdam

[23] Y. L. Sachkov, Conjugate time in the sub-Riemannian problem on the cartan group. J. Dyn. Control Syst. (2021). | MR | Zbl

[24] A. M. Vershik and V. Y. Gershkovich, Nonholonomic dynamical systems. Geometry of distributions and variational problems, in Current problems in mathematics. Fundamental directions, Vol. 16 (Russian), Itogi Nauki i Tekhniki, 5–85, 307, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1987). | MR | Zbl

Cité par Sources :

E.H. was supported by the SISSA project DIP_ECC_MATE_CoordAreaMate_0459 – Dipartimenti di Eccellenza 2018 – 2022 (CUP: G91—18000050006).