A novel W 1 , approach to shape optimisation with Lipschitz domains
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 2

This article introduces a novel method for the implementation of shape optimisation with Lipschitz domains. We propose to use the shape derivative to determine deformation fields which represent steepest descent directions of the shape functional in the W$$-topology. The idea of our approach is demonstrated for shape optimisation of n-dimensional star-shaped domains, which we represent as functions defined on the unit (n − 1)-sphere. In this setting we provide the specific form of the shape derivative and prove the existence of solutions to the underlying shape optimisation problem. Moreover, we show the existence of a direction of steepest descent in the W$$− topology. We also note that shape optimisation in this context is closely related to the −Laplacian, and to optimal transport, where we highlight the latter in the numerics section. We present several numerical experiments in two dimensions illustrating that our approach seems to be superior over a widely used Hilbert space method in the considered examples, in particular in developing optimised shapes with corners.

DOI : 10.1051/cocv/2021108
Classification : 35Q93, 49Q10, 35R30, 49K20, 49J20
Keywords: PDE constrained shape optimization, star-shaped domain, $$1, descent, optimal transport, $$-Laplacian shape derivative
@article{COCV_2022__28_1_A2_0,
     author = {Deckelnick, Klaus and Herbert, Philip J. and Hinze, Michael},
     title = {A novel $W^{1 , \infty}$ approach to shape optimisation with {Lipschitz} domains},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2021108},
     mrnumber = {4362195},
     zbl = {1483.35299},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021108/}
}
TY  - JOUR
AU  - Deckelnick, Klaus
AU  - Herbert, Philip J.
AU  - Hinze, Michael
TI  - A novel $W^{1 , \infty}$ approach to shape optimisation with Lipschitz domains
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021108/
DO  - 10.1051/cocv/2021108
LA  - en
ID  - COCV_2022__28_1_A2_0
ER  - 
%0 Journal Article
%A Deckelnick, Klaus
%A Herbert, Philip J.
%A Hinze, Michael
%T A novel $W^{1 , \infty}$ approach to shape optimisation with Lipschitz domains
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021108/
%R 10.1051/cocv/2021108
%G en
%F COCV_2022__28_1_A2_0
Deckelnick, Klaus; Herbert, Philip J.; Hinze, Michael. A novel $W^{1 , \infty}$ approach to shape optimisation with Lipschitz domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 2. doi: 10.1051/cocv/2021108

[1] G. Allaire, C. Dapogny and F. Jouve, Shape and topology optimization, in Differential Geometric Partial Differential Equations: Part II, vol. 22 of Handbook of Numerical Analysis. Elsevier, Amsterdam, Netherlands (2021) 3–124. | MR

[2] U. Ayachit, The ParaView Guide: A Parallel Visualization Application. Kitware, Inc., Clifton Park, NY, USA (2015).

[3] P. Bastian, M. Blatt, A. Dedner, N.-A. Dreier, C. Engwer, R. Fritze, C. Gräser, C. Grüninger, D. Kempf, R. Klöfkorn, M. Ohlberger and O. Sander, The dune framework: Basic concepts and recent developments. Comput. Math. Appl. 81 (2021) 75–112. | MR | Zbl | DOI

[4] J. A. Bello, E. Fernández-Cara, J. Lemoine and J. Simon, The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier–Stokes flow. SIAM J. Control Optim. 35 (1997) 626–640. | MR | Zbl | DOI

[5] A. Boulkhemair, A. Chakib and A. Sadik, On a shape derivative formula for a family of star-shaped domains (2020).

[6] C. Brandenburg, F. Lindemann, M. Ulbrich and S. Ulbrich, A continuous adjoint approach to shape optimization for Navier stokes flow, in Optimal Control of Coupled Systems of Partial Differential Equations. vol. 158 of Int. Ser. Numer. Math., Basel, Birkhäuser (2015) 35–56. | MR | Zbl | DOI

[7] V. I. Burenkov, Sobolev spaces on domains. vol. 137, Springer (1998). | MR | Zbl | DOI

[8] K. Deckelnick, G. Dziuk and C. M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139–232. | MR | Zbl | DOI

[9] M. Delfour and J. Zolesio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, Second Edition, Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) (2011). | MR | Zbl

[10] M. Eigel and K. Sturm, Reproducing kernel Hilbert spaces and variable metric algorithms in PDE-constrained shape optimization. Optim. Methods Softw. 33 (2018) 268–296. | MR | Zbl | DOI

[11] K. Eppler and H. Harbrecht, Shape optimization for free boundary problems, in Proceedings of the International Conference Systems Theory: Modelling, Analysis and Control. Vol. 160 of Internat. Ser. Numer. Math., Basel, Birkhäuser (2012) 277–288.

[12] K. Eppler, H. Harbrecht and R. Schneider, On convergence in elliptic shape optimization. SIAM J. Control Optim. 46 (2007) 61–83. | MR | Zbl | DOI

[13] L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions, Revised Edition, Textbooks in Mathematics, CRC Press (2015). | MR | Zbl

[14] M. Fischer, F. Lindemann, M. Ulbrich and S. Ulbrich, Fréchet differentiability of unsteady incompressible Navier–Stokes flow with respect to domain variations of low regularity by using a general analytical framework. SIAM J. Control Optim. 55 (2017) 3226–3257. | MR | Zbl | DOI

[15] H. Garcke, C. Hecht, M. Hinze and C. Kahle, Numerical approximation of phase field based shape and topology optimization for fluids. SIAM J. Sci. Comput. 37 (2015) A1846–A1871. | MR | Zbl | DOI

[16] H. Garcke, M. Hinze, C. Kahle and K. Lam, A phase field approach to shape optimization in Navier–Stokes flow with integral state constraints. Adv. Comput. Math. 44 (2018) 1345–1383. | MR | Zbl | DOI

[17] P. Guillaume and M. Masmoudi, Computation of high order derivatives in optimal shape design. Numer. Math. 67 (1994) 231–250. | MR | Zbl | DOI

[18] J. Haubner, M. Siebenborn and M. Ulbrich, A continuous perspective on shape optimization via domain transformations. To appear Siam J. Sci. Comput. (2021). | MR | Zbl

[19] J. Haubner, M. Ulbrich and S. Ulbrich, Analysis of shape optimization problems for unsteady fluid-structure interaction. Inverse Probl. 36 (2020) 1–38. | MR | Zbl | DOI

[20] A. Henrot and M. Pierre, Shape Variation and Optimization: A Geometrical Analysis, EMS tracts in mathematics, European Mathematical Society (2018). | MR | Zbl

[21] M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30 (2005) 45–63. | MR | Zbl | DOI

[22] R. Hiptmair and A. Paganini, Shape optimization by pursuing diffeomorphisms. Comput. Methods Appl. Math. 15 (2015) 291–305. | MR | Zbl | DOI

[23] R. Hiptmair, A. Paganini and S. Sargheini, Comparison of approximate shape gradients. BIT Numer. Math. 55 (2015) 459–485. | MR | Zbl | DOI

[24] J. A. Iglesias, K. Sturm and F. Wechsung, Two-dimensional shape optimization with nearly conformal transformations. SIAM J. Sci. Comput. 40 (2018) A3807–A3830. | MR | Zbl | DOI

[25] H. Ishii and P. Loreti, Limits of solutions of p -Laplace equations as p goes to infinity and related variational problems. SIAM J. Math. Anal. 37 (2005) 411–437. | MR | Zbl | DOI

[26] H. Jylhä, An optimal transportation problem related to the limits of solutions of local and nonlocal p -Laplace-type problems. Revista matemática complutense 28 (2015) 85–121. | MR | Zbl | DOI

[27] N. Kühl, P. Müller, M. Hinze and T. Rung, Decoupling of control and force objective in adjoint-based fluid dynamic shape optimization. AIAA J. 57 (2019) 4110. | DOI

[28] P. M. Müller, N. Kühl, M. Siebenborn, K. Deckelnick, M. Hinze and T. Rung, A novel p -harmonic descent approach applied to fluid dynamic shape optimization. Struct. Multidisc Optim. 64 (2021) 3489–3503. | MR | DOI

[29] F. Murat and J. Simon, Etude de problemes d’optimal design, in Optimization Techniques Modeling and Optimization in the Service of Man Part 2. Springer Berlin Heidelberg (1976) 54–62. | Zbl | DOI

[30] A. Paganini, F. Wechsung and P. E. Farrell, Higher-order moving mesh methods for PDE-constrained shape optimization. SIAM J. Sci. Comput. 40 (2018) A2356–A2382. | MR | Zbl | DOI

[31] G. Peyré and M. Cuturi, Computational optimal transport. Found. Trends Mach. Learn. 11 (2019) 355–607. | DOI

[32] L. Radtke, J. Heners, M. Hinze and A. Düster, A partitioned approach for adjoint shape optimization in fluid-structure interaction. J. Comput. Mech. 61 (2018) 259–276.

[33] F. Santambrogio, Optimal transport for applied mathematicians. Birkäuser, NY, 55 (2015), 94. | MR | Zbl

[34] S. Schmidt, C. Ilic, V. Schulz and N. Gauger, Three dimensional large scale aerodynamic shape optimization based on the shape calculus. AIAA J. 51 (2013) 2615–2627. | DOI

[35] V. Schulz, M. Siebenborn and K. Welker, PDE constrained shape optimization as optimization on shape manifolds, in Geometric Science of Information. Vol. 9389 of Lecture Notes in Computer Science. Springer, New York (2015) 499–508. | MR | Zbl | DOI

[36] V. Schulz, M. Siebenborn and K. Welker, Efficient PDE constrained shape optimization based on Steklov-Poincaré type metrics. SIAM J. Optim. 26 (2016) 2800–2819. | MR | Zbl | DOI

[37] M. Siebenborn and K. Welker, Algorithmic aspects of multigrid methods for optimization in shape spaces. SIAM J. Sci. Comput. 39 (2017) B1156–B1177. | MR | Zbl | DOI

[38] J. Simon, Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980) 649–687. | MR | Zbl | DOI

[39] J. Sokołowski and J. Zolésio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Lecture Notes in Computer Science. Springer-Verlag (1992). | MR | Zbl

Cité par Sources :