A spherical rearrangement proof of the stability of a Riesz-type inequality and an application to an isoperimetric type problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 4

We prove the stability of the ball as global minimizer of an attractive shape functional under volume constraint, by means of mass transportation arguments. The stability exponent is 1∕2 and it is sharp. Moreover, we use such stability result together with the quantitative (possibly fractional) isoperimetric inequality to prove that the ball is a global minimizer of a shape functional involving both an attractive and a repulsive term with a sufficiently large fixed volume and with a suitable (possibly fractional) perimeter penalization.

DOI : 10.1051/cocv/2021106
Classification : 49K40, 49J40
Keywords: Riesz rearrangement inequality, fractional perimeter, Riesz potential, quantitative isoperimetric inequality
@article{COCV_2022__28_1_A4_0,
     author = {Ascione, Giacomo},
     title = {A spherical rearrangement proof of the stability of a {Riesz-type} inequality and an application to an isoperimetric type problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2021106},
     mrnumber = {4362197},
     zbl = {1481.49041},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021106/}
}
TY  - JOUR
AU  - Ascione, Giacomo
TI  - A spherical rearrangement proof of the stability of a Riesz-type inequality and an application to an isoperimetric type problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021106/
DO  - 10.1051/cocv/2021106
LA  - en
ID  - COCV_2022__28_1_A4_0
ER  - 
%0 Journal Article
%A Ascione, Giacomo
%T A spherical rearrangement proof of the stability of a Riesz-type inequality and an application to an isoperimetric type problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021106/
%R 10.1051/cocv/2021106
%G en
%F COCV_2022__28_1_A4_0
Ascione, Giacomo. A spherical rearrangement proof of the stability of a Riesz-type inequality and an application to an isoperimetric type problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 4. doi: 10.1051/cocv/2021106

[1] L. Ambrosio, Lecture notes on optimal transport problems, in Mathematical Aspects of Evolving Interfaces. Springer (2003) 1–52. | MR | Zbl

[2] P. Billingsley, Convergence of Probability Measures. John Wiley & Sons (2013). | MR | Zbl

[3] M. Bonacini and R. Cristoferi, Local and global minimality results for a nonlocal isoperimetric problem on N . SIAM J. Math. Anal. 46 (2014) 2310–2349. | MR | Zbl | DOI

[4] T. J. I. Bromwich, An Introduction to the Theory of Infinite Series. Vol. 335. Merchant Books (1908). | JFM

[5] A. Burchard, Cases of equality in the Riesz rearrangement inequality. Ann. Math. (1996) 499–527. | MR | Zbl | DOI

[6] A. Burchard and G. R. Chambers, Geometric stability of the Coulomb energy. Calc. Variat. Partial Differ. Equ. 54 (2015) 3241–3250. | MR | Zbl | DOI

[7] A. Burchard, R. Choksi and I. Topaloglu, Nonlocal shape optimization via interactions of attractive and repulsive potentials. Indiana Univ. Math. J. 67 (2018) 375–395. | MR | Zbl | DOI

[8] R. Choksi, R. C. Fetecau and I. Topaloglu, On minimizers of interaction functionals with competing attractive and repulsive potentials, vol. 32 of Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Elsevier (2015) 1283–1305. | MR | Zbl | Numdam | DOI

[9] R. Choksi, C. B. Muratov and I. Topaloglu, An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications. Notic. AMS 64 (2017) 1275–1283. | MR | Zbl

[10] R. Choksi and M. A. Peletier, Small volume-fraction limit of the diblock copolymer problem: II. Diffuse-interface functional. SIAM J. Math. Anal. 43 (2011) 739–763. | MR | Zbl | DOI

[11] M. Christ, A sharpened Riesz-Sobolev inequality. Preprint (2017). | arXiv

[12] M. Cicalese and G. P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ratl. Mech. Anal. 206 (2012) 617–643. | MR | Zbl | DOI

[13] M. Cozzi and A. Figalli, Regularity theory for local and nonlocal minimal surfaces: an overview, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Springer (2017) 117–158. | MR | Zbl | DOI

[14] C. Dellacherie and P.-A. Meyer, Probabilities and potential. Bull. Am. Math. Soc. 2 (1980) 510–514. | DOI

[15] R. Estrada, The Funk-Hecke formula, harmonic polynomials, and derivatives of radial distributions. Boletim da Sociedade Paranaense de Matemática 37 (2017) 143–157. | MR | Zbl | DOI

[16] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (2015). | MR | Zbl | DOI

[17] F. Ferrari, Weyl and Marchaud derivatives: a forgotten history. Mathematics 6 (2018) 6. | Zbl | DOI

[18] A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336 (2015) 441–507. | MR | Zbl | DOI

[19] R. Frank, E. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21 (2008) 925–950. | MR | Zbl | DOI

[20] R. L. Frank, R. Killip and P. T. Nam, Nonexistence of large nuclei in the liquid drop model. Lett. Math. Phys. 106 (2016) 1033–1036. | MR | Zbl | DOI

[21] R. L. Frank and E. H. Lieb, A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J. Math. Anal. 47 (2015) 4436–4450. | MR | Zbl | DOI

[22] R. L. Frank and E. H. Lieb, A note on a theorem of M. Christ. Preprint (2019). | arXiv

[23] R. L. Frank and E. H. Lieb, Proof of spherical flocking based on quantitative rearrangement inequalities. Preprint (2019). | arXiv | MR | Zbl

[24] R. L. Frank and P. T. Nam, Existence and nonexistence in the liquid drop model. Calc. Variat. Partial Differ. Equ. 60 (2021). | MR | Zbl

[25] R. L. Frank, P. T. Nam and H. Van Den Bosch, The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory. Commun. Pure Appl. Math. 71 (2018) 577–614. | MR | Zbl | DOI

[26] B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in n . Trans. Am. Math. Soc. 314 (1989) 619–638. | MR | Zbl

[27] N. Fusco, The quantitative isoperimetric inequality and related topics. Bull. Math. Sci. 5 (2015) 517–607. | MR | Zbl | DOI

[28] N. Fusco and A. Pratelli, Sharp stability for the Riesz potential. ESAIM: COCV 26 (2020) 113. | MR | Zbl | Numdam

[29] G. Gamow, Mass defect curve and nuclear constitution. Proc. Royal Soc. London A 126 (1930) 632–644. | JFM

[30] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Academic Press (2014).

[31] V. Julin, Isoperimetric problem with a Coulomb repulsive term. Indiana Univ. Math. J. (2014) 77–89. | MR | Zbl | DOI

[32] H. Knüpfer and C. B. Muratov, On an isoperimetric problem with a competing nonlocal term I: the planar case. Commun. Pure Appl. Math. 66 (2013) 1129–1162. | MR | Zbl | DOI

[33] H. Knüpfer and C. B. Muratov, On an isoperimetric problem with a competing nonlocal term II: the general case. Commun. Pure Appl. Math. 67 (2014) 1974–1994. | MR | Zbl | DOI

[34] D. A. La Manna An isoperimetric problem with a Coulombic repulsion and attractive term. ESAIM: COCV 25 (2019) 14. | MR | Zbl | Numdam

[35] P.-L. Lions, The concentration-compactness principle in the Calculus of Variations. The locally compact case. Part 1. Ann. l’Institut Henri Poincaré (C) Non Linear Analysis 1 (1984) 109–145. | MR | Zbl | Numdam | DOI

[36] J. Lu and F. Otto, Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model. Commun. Pure Appl. Math. 67 (2014) 1605–1617. | MR | Zbl | DOI

[37] J. Lu and F. Otto, An isoperimetric problem with Coulomb repulsion and attraction to a background nucleus. Preprint (2015). | arXiv | Numdam | MR | Zbl

[38] R. E. Pfiefer, Maximum and minimum sets for some geometric mean values. J. Theor. Probab. 3 (1990) 169–179. | MR | Zbl | DOI

[39] L. Pick, A. Kufner, O. John and S. Fucík, Function Spaces 1. Walter de Gruyter (2012). | DOI

[40] F. Riesz, Sur une inegalite integarale. J. London Math. Soc. 1 (1930) 162–168. | MR | JFM | DOI

[41] B. Rubin, The inversion of fractional integrals on a sphere. Israel J. Math. 79 (1992) 47–81. | MR | Zbl | DOI

[42] B. Rubin, Vol. 160 of Introduction to Radon transforms. Cambridge University Press (2015). | MR | Zbl

[43] S. Samko, Hypersingular Integrals and Their Applications. CRC Press (2001). | MR | DOI

[44] L. J. Slater, Generalized Hypergeometric Functions. Cambridge Univ. Press (1966). | MR | Zbl

[45] F. G. Tricomi, A. Erdélyi et al., The asymptotic expansion of a ratio of gamma functions. Pacific J. Math. 1 (1951) 133–142. | MR | Zbl | DOI

[46] C. Villani, Vol. 338 of Optimal Transport: Old and New. Springer Science & Business Media (2008). | MR | Zbl

Cité par Sources :

The author is supported by MIUR-PRIN 2017, project Stochastic Models for Complex Systems, no. 2017JFFHSH and by Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni (GNAMPA-INdAM).