We show weak lower semi-continuity of functionals assuming the new notion of a “convexly constrained” 𝒜-quasiconvex integrand. We assume 𝒜-quasiconvexity only for functions defined on a set K which is convex. Assuming this and sufficient integrability of the sequence we show that the functional is still (sequentially) weakly lower semi-continuous along weakly convergent “convexly constrained” 𝒜-free sequences. In a motivating example, the integrand is $$ and the convex constraint is positive semi-definiteness of a matrix field.
Keywords: Convex sets, $$-quasiconvexity, $$-free, lower semi-continuity, Young measures, potentials, calculus of variations
@article{COCV_2021__27_1_A109_0,
author = {Skipper, Jack and Wiedemann, Emil},
title = {Lower semi-continuity for $\mathcal{A}$-quasiconvex functionals under convex restrictions},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021105},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021105/}
}
TY - JOUR
AU - Skipper, Jack
AU - Wiedemann, Emil
TI - Lower semi-continuity for $\mathcal{A}$-quasiconvex functionals under convex restrictions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2021
VL - 27
PB - EDP-Sciences
UR - https://www.numdam.org/articles/10.1051/cocv/2021105/
DO - 10.1051/cocv/2021105
LA - en
ID - COCV_2021__27_1_A109_0
ER -
%0 Journal Article
%A Skipper, Jack
%A Wiedemann, Emil
%T Lower semi-continuity for $\mathcal{A}$-quasiconvex functionals under convex restrictions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021105/
%R 10.1051/cocv/2021105
%G en
%F COCV_2021__27_1_A109_0
Skipper, Jack; Wiedemann, Emil. Lower semi-continuity for $\mathcal{A}$-quasiconvex functionals under convex restrictions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 107. doi: 10.1051/cocv/2021105
[1] and , On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ratl. Mech. Anal. 217 (2015) 413–437.
[2] and , 𝒜-quasiconvexity and partial regularity. Preprint (2020). | arXiv
[3] , Weak continuity and weak lower semi-continuity of non-linear functionals. Springer-Verlag (1982).
[4] , An application of the Cayley-Hamilton theorem to generalized matrix inversion. SIAM Rev. 7 (1965) 526–528.
[5] and , On admissibility criteria for weak solutions of the Euler equations. Arch. Ratl. Mech. Anal. 195 (2010) 225–260.
[6] , and , On the upper semicontinuity of a quasiconcave functional. J. Funct. Anal. 279 (2020) Art. 108660 (35 pp.).
[7] and , On a question of D. Serre. ESAIM: COCV 26 (2020) Paper No. 97 (11 pp.).
[8] and , 𝒜-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355–1390.
[9] , Vol. 2 of Classical fourier analysis. Springer, New York (2008).
[10] , and , Orientation-preserving Young measures. Q. J. Math. 67 (2016) 439–466.
[11] and , 𝒜-quasiconvexity Gårding inequalities and applications in PDE constrained problems in dynamics and statics. SIAM J. Math. Anal. 53 (2021) 4178–4211.
[12] , Sobolev spaces. Springer (2013).
[13] , Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25–53.
[14] , Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978) 489–507.
[15] , Potentials for 𝒜-quasiconvexity. Calc. Var. Partial Differ. Equ. 58 (2019) Paper No. 105 (16 pp.).
[16] , Divergence-free positive symmetric tensors and fluid dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018) 1209–1234.
[17] , Multi-dimensional scalar conservation laws with unbounded integrable initial data. (2018). | arXiv
[18] , Compensated integrability. Applications to the Vlasov-Poisson equation and other models in mathematical physics. J. Math. Pures Appl. 127 (2019) 67–88.
[19] , Estimating the number and the strength of collisions in molecular dynamics. (2019). | arXiv
[20] and , Multi-dimensional Burgers equation with unbounded initial data: well-posedness and dispersive estimates. Arch. Ratl. Mech. Anal. 234 (2019) 1391–1411.
[21] , Vol. 2 of Singular integrals and differentiability properties of functions. Princeton University Press (1970).
[22] , Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires. In Journées d‘Analyse Non Linéaire, 228–241, Lecture Notes in Math. 665. Springer, Berlin (1978).
[23] , Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, 4, 136–212, Res. Notes in Math. 39, Pitman, Boston/London (1979).
Cité par Sources :





