Lower semi-continuity for 𝒜 -quasiconvex functionals under convex restrictions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 107

We show weak lower semi-continuity of functionals assuming the new notion of a “convexly constrained” 𝒜-quasiconvex integrand. We assume 𝒜-quasiconvexity only for functions defined on a set K which is convex. Assuming this and sufficient integrability of the sequence we show that the functional is still (sequentially) weakly lower semi-continuous along weakly convergent “convexly constrained” 𝒜-free sequences. In a motivating example, the integrand is $$ and the convex constraint is positive semi-definiteness of a matrix field.

DOI : 10.1051/cocv/2021105
Classification : 49J45, 35E10, 35Q35
Keywords: Convex sets, $$-quasiconvexity, $$-free, lower semi-continuity, Young measures, potentials, calculus of variations
@article{COCV_2021__27_1_A109_0,
     author = {Skipper, Jack and Wiedemann, Emil},
     title = {Lower semi-continuity for $\mathcal{A}$-quasiconvex functionals under convex restrictions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021105},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021105/}
}
TY  - JOUR
AU  - Skipper, Jack
AU  - Wiedemann, Emil
TI  - Lower semi-continuity for $\mathcal{A}$-quasiconvex functionals under convex restrictions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021105/
DO  - 10.1051/cocv/2021105
LA  - en
ID  - COCV_2021__27_1_A109_0
ER  - 
%0 Journal Article
%A Skipper, Jack
%A Wiedemann, Emil
%T Lower semi-continuity for $\mathcal{A}$-quasiconvex functionals under convex restrictions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021105/
%R 10.1051/cocv/2021105
%G en
%F COCV_2021__27_1_A109_0
Skipper, Jack; Wiedemann, Emil. Lower semi-continuity for $\mathcal{A}$-quasiconvex functionals under convex restrictions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 107. doi: 10.1051/cocv/2021105

[1] S. Conti and G. Dolzmann, On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ratl. Mech. Anal. 217 (2015) 413–437.

[2] S. Conti and F. Gmeineder, 𝒜-quasiconvexity and partial regularity. Preprint (2020). | arXiv

[3] B. Dacorogna, Weak continuity and weak lower semi-continuity of non-linear functionals. Springer-Verlag (1982).

[4] H. P. Decell, Jr., An application of the Cayley-Hamilton theorem to generalized matrix inversion. SIAM Rev. 7 (1965) 526–528.

[5] C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ratl. Mech. Anal. 195 (2010) 225–260.

[6] L. De Rosa, D. Serre and R. Tione, On the upper semicontinuity of a quasiconcave functional. J. Funct. Anal. 279 (2020) Art. 108660 (35 pp.).

[7] L. De Rosa and R. Tione, On a question of D. Serre. ESAIM: COCV 26 (2020) Paper No. 97 (11 pp.).

[8] I. Fonseca and S. Müller, 𝒜-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355–1390.

[9] L. Grafakos, Vol. 2 of Classical fourier analysis. Springer, New York (2008).

[10] K. Koumatos, F. Rindler and E. Wiedemann, Orientation-preserving Young measures. Q. J. Math. 67 (2016) 439–466.

[11] K. Koumatos and A. Vikelis, 𝒜-quasiconvexity Gårding inequalities and applications in PDE constrained problems in dynamics and statics. SIAM J. Math. Anal. 53 (2021) 4178–4211.

[12] V. Maz’Ya, Sobolev spaces. Springer (2013).

[13] C. B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25–53.

[14] F. Murat, Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978) 489–507.

[15] B. Răiţa, Potentials for 𝒜-quasiconvexity. Calc. Var. Partial Differ. Equ. 58 (2019) Paper No. 105 (16 pp.).

[16] D. Serre, Divergence-free positive symmetric tensors and fluid dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018) 1209–1234.

[17] D. Serre, Multi-dimensional scalar conservation laws with unbounded integrable initial data. (2018). | arXiv

[18] D. Serre, Compensated integrability. Applications to the Vlasov-Poisson equation and other models in mathematical physics. J. Math. Pures Appl. 127 (2019) 67–88.

[19] D. Serre, Estimating the number and the strength of collisions in molecular dynamics. (2019). | arXiv

[20] D. Serre and L. Silvestre, Multi-dimensional Burgers equation with unbounded initial data: well-posedness and dispersive estimates. Arch. Ratl. Mech. Anal. 234 (2019) 1391–1411.

[21] E. M. Stein, Vol. 2 of Singular integrals and differentiability properties of functions. Princeton University Press (1970).

[22] L. Tartar, Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires. In Journées d‘Analyse Non Linéaire, 228–241, Lecture Notes in Math. 665. Springer, Berlin (1978).

[23] L. Tartar, Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, 4, 136–212, Res. Notes in Math. 39, Pitman, Boston/London (1979).

Cité par Sources :