High-order homogenization in optimal control by the Bloch wave method
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 100

This article examines a linear-quadratic elliptic optimal control problem in which the cost functional and the state equation involve a highly oscillatory periodic coefficient A$$. The small parameter ε > 0 denotes the periodicity length. We propose a high-order effective control problem with constant coefficients that provides an approximation of the original one with error O(ε$$), where M ∈ ℕ is as large as one likes. Our analysis relies on a Bloch wave expansion of the optimal solution and is performed in two steps. In the first step, we expand the lowest Bloch eigenvalue in a Taylor series to obtain a high-order effective optimal control problem. In the second step, the original and the effective problem are rewritten in terms of the Bloch and the Fourier transform, respectively. This allows for a direct comparison of the optimal control problems via the corresponding variational inequalities, leading to our main theoretical result on the high-oder approximation.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021088
Classification : 35B27, 35P05, 49J20
Keywords: Optimal control, periodic homogenization, Bloch analysis
@article{COCV_2021__27_1_A102_0,
     author = {Lamacz-Keymling, Agnes and Yousept, Irwin},
     title = {High-order homogenization in optimal control by the {Bloch} wave method},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021088},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021088/}
}
TY  - JOUR
AU  - Lamacz-Keymling, Agnes
AU  - Yousept, Irwin
TI  - High-order homogenization in optimal control by the Bloch wave method
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021088/
DO  - 10.1051/cocv/2021088
LA  - en
ID  - COCV_2021__27_1_A102_0
ER  - 
%0 Journal Article
%A Lamacz-Keymling, Agnes
%A Yousept, Irwin
%T High-order homogenization in optimal control by the Bloch wave method
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021088/
%R 10.1051/cocv/2021088
%G en
%F COCV_2021__27_1_A102_0
Lamacz-Keymling, Agnes; Yousept, Irwin. High-order homogenization in optimal control by the Bloch wave method. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 100. doi: 10.1051/cocv/2021088

[1] A. Abdulle and T. N. Pouchon, A priori error analysis of the finite element heterogeneous multiscale method for the wave equation in heterogeneous media over long time. SIAM J. Numer. Anal. 54 (2016) 1507–1534.

[2] A. Abdulle and T. N. Pouchon, Effective models for the multidimensional wave equation in heterogeneous media over long time and numerical homogenization. Math. Models Methods Appl. Sci. 26 (2016).

[3] A. Abdulle and T. N. Pouchon, Effective models and numerical homogenization for wave propagation in heterogeneous media on arbitrary timescales. Found. Comput. Math. 20 (2020) 1505–1547.

[4] G. Allaire, M. Briane and M. Vanninathan, A comparison between two scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures. SEMA J. 73 (2016) 237–259.

[5] G. Allaire, A. Lamacz-Keymling and J. Rauch, Crime pays; homogenized wave equations for long times. To appear Asymptotic Analysis.

[6] N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media. Kluwer, Dordrecht (1989).

[7] A. Benoit and A. Gloria, Long-time homogenization and asymptotic ballistic transport of classical waves. Annales Scientifiques de l’École Normale Supérieure 52 (2019) 703–759.

[8] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. Corrected reprint ofthe 1978 original, AMS Chelsea Publishing, Providence, RI (2011).

[9] G. Bouchitté and B. Schweizer, Homogenization of Maxwell’s equations in a split ring geometry. Multiscale Model. Simul. 8 (2010) 717–750.

[10] S. Brahim-Otsmane, G. A. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 71 (1992) 197–231.

[11] G. Buttazzo, M. E. Drakhlin, L. Freddi and E. Stepanov, Homogenization of optimal control problems for functional-differential equations. J. Optim. Theory Appl. 93 (1997) 103–119.

[12] D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes. SIAM J. Math. Anal. 44 (2012) 718–760.

[13] C. Conca and M. Vanninathan, Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57 (1997) 1639–1659.

[14] C. Conca, R. Orive and M. Vanninathan, Bloch approximation in homogenization and applications. SIAM J. Math. Anal. 33 (2002) 1166–1198.

[15] C. Conca, R. Orive and M. Vanninathan, On Burnett coefficients in periodic media. J. Math. Phys. 47 (2006) 032902.

[16] U. De Maio, P. Kogut and R. Manzo, Asymptotic analysis of an optimal boundary control problem for ill-posed elliptic equation in domains with rugous boundary. Asymptot. Anal. 118 (2020) 209–234.

[17] T. Dohnal, A. Lamacz and B. Schweizer, Bloch-wave homogenization on large time scales and dispersive effective wave equations. Multiscale Model. Simul. 12 (2014) 488–513.

[18] T. Dohnal, A. Lamacz and B. Schweizer, Dispersive homogenized models and coefficient formulas for waves in general periodic media. Asymptot. Anal. 93 (2015) 21–49.

[19] S. Kesavan and T. Muthukumar, Homogenization of an optimal control problem with state-constraints. Differ. Equ. Dyn. Syst. 19 (2011) 361–374.

[20] S. Kesavan and M. Rajesh, Homogenization of periodic optimal control problems via multi-scale convergence. Proc. Indian Acad. Sci. Math. Sci. 108 (1998) 189–207.

[21] S. Kesavan and J. Saint Jean Paulin, Homogenization of an optimal control problem. SIAM J. Control Optim. 35 (1997) 1557–1573.

[22] P. Kogut, Higher-order asymptotics of the solutions of the problem of the optimal control of a distributed system with rapidly oscillating coefficients. Ukrainian Math. J. 48 (1996) 1063–1073.

[23] P. Kogut and G. Leugering, Homogenization of optimal control problems in variable domains. Principle of the fictitious homogenization. Asymptot. Anal. 26 (2001) 37–72.

[24] P. Kogut and G. Leugering, On S-homogenization of an optimal control problem with control and state constraints. Z. Anal. Anwen. 20 (2001) 395–429.

[25] P. Kogut and G. Leugering, Asymptotic analysis of state constrained semilinear optimal control problems. J. Optim. Theory Appl. 135 (2007) 301–321.

[26] P. Kogut and G. Leugering, Homogenization of Dirichlet optimal control problems with exact partial controllability constraints. Asymptot. Anal. 57 (2008) 229–249.

[27] P. Kogut and G. Leugering, Optimal control problems for partial differential equations on reticulated domains. Approximation and asymptotic analysis. Systems & Control: Foundations & Applications. Birkhäuser/Springer, New York (2011).

[28] A. Lamacz, Dispersive effective models for waves in heterogeneous media. Math. Models Methods Appl. Sci. 21 (2011) 1871–1899.

[29] A. Lamacz and B. Schweizer, Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Discrete Contin. Dyn. Syst. Ser. S 10 (2017) 815–835.

[30] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations auxdérivées partielles. Dunod, Paris; Gauthier-Villars, Paris (1968).

[31] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory. Vol. 120 of Springer Lecture Notes in Physics (1980).

[32] F. Santosa and W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51 (1991) 984–1005.

[33] F. Tröltzsch, Optimal Control of Partial Differential Equations. Grad. Stud. Math. 112. AMS, Providence, RI (2010).

[34] I. Yousept, Optimal control of quasilinear $$(curl)-elliptic partial differential equations in magnetostatic field problems. SIAM J. Control and Optim. 51 (2013) 3624–3651.

[35] I. Yousept, Optimal control of non-smooth hyperbolic evolution Maxwell equations in type-II superconductivity. SIAM J. Control and Optim. 55 (2017) 2305–2332.

Cité par Sources :

The work of the second author was funded by German Research Foundation (DFG grants YO159/2-2 and YO159/4-1).