L p -Variational solutions of multivalued backward stochastic differential equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 88

We prove the existence and uniqueness of the L$$-variational solution, with p > 1, of the following multivalued backward stochastic differential equation with p-integrable data:

$$

where τ is a stopping time, Q is a progressively measurable increasing continuous stochastic process and $$Ψ is the subdifferential of the convex lower semicontinuous function y↦Ψ(t, y). In the framework of [14] (the case p ≥ 2), the strong solution found it there is the unique variational solution, via the uniqueness property proved in the present article.

DOI : 10.1051/cocv/2021083
Classification : 60H10, 60F25, 47J20, 49J40
Keywords: Backward stochastic differential equations, subdifferential operators, Stochastic variational inequalities, $$-integrable data
@article{COCV_2021__27_1_A90_0,
     author = {Maticiuc, Lucian and R\u{a}\c{s}canu, Aurel},
     title = {\protect\emph{ $L^p${}-Variational} solutions of multivalued backward stochastic differential equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021083},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021083/}
}
TY  - JOUR
AU  - Maticiuc, Lucian
AU  - Răşcanu, Aurel
TI  -  $L^p$-Variational solutions of multivalued backward stochastic differential equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021083/
DO  - 10.1051/cocv/2021083
LA  - en
ID  - COCV_2021__27_1_A90_0
ER  - 
%0 Journal Article
%A Maticiuc, Lucian
%A Răşcanu, Aurel
%T  $L^p$-Variational solutions of multivalued backward stochastic differential equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021083/
%R 10.1051/cocv/2021083
%G en
%F COCV_2021__27_1_A90_0
Maticiuc, Lucian; Răşcanu, Aurel.  $L^p$-Variational solutions of multivalued backward stochastic differential equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 88. doi: 10.1051/cocv/2021083

[1] A. Aman, L$$ solution of reflected generalized BSDEs with non–Lipschitz coefficients. Random Oper. Stoch. Equ. 17 (2009) 201–219.

[2] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei, Bucureşti, Romania (1976).

[3] P. Briand and R. Carmona, BSDEs with polynomial growth generators. J. Appl. Math. Stoch. Anal. 13 (2000) 207–238.

[4] P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, L$$ solutions of backward stochastic differential equations. Stoch. Process. Appl. 108 (2003) 109–129.

[5] R. W. R. Darling and E. Pardoux, Backward SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25 (1997) 1135–1159.

[6] R. Dobrushin, P. Groeneboom and M. Ledoux, Lectures on Probability Theory and Statistics. Ecole d’Eté de Probabilités de Saint-Flour – 1994. Springer, Berlin (1996).

[7] D. Duffie and L. Epstein, Stochastic differential utility. Econometrica 60 (1992) 353–394.

[8] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE’s and related obstacle problems for PDE’s. Ann. Probab. 25 (1997) 702–737.

[9] N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71.

[10] S. Hamadène and A. Popier, L$$-solutions for reflected backward stochastic differential equations. Stoch. Dyn. 12 (2012) 1150016 (35 pages).

[11] T. Klimsiak, BSDEs with monotone generator and two irregular reflecting barriers. Bull. Sci. Math. 137 (2013) 268–321.

[12] J. P. Lepeltier, A. Matoussi and M. Xu, Reflected backward stochastic differential equations under monotonicity and general increasing growth conditions. Adv. Appl. Probab. 37 (2005) 134–159.

[13] L. Maticiuc and A. Răşcanu, A stochastic approach to a multivalued Dirichlet-Neumann problem. Stoch. Process. Appl. 120 (2010) 777–800.

[14] L. Maticiuc and A. Răşcanu, Backward Stochastic Variational Inequalities on Random Interval. Bernoulli 21 (2015) 1166–1199.

[15] L. Maticiuc and A. Răşcanu, On the continuity of the probabilistic representation of a semilinear Neumann–Dirichlet problem. Stoch. Process. Appl. 126 (2016) 572–607.

[16] L. Maticiuc and A. Răşcanu, Viability of moving sets for a nonlinear Neumann problem. Nonlinear Anal. 66 (2007) 1587–1599.

[17] E. Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs. In Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998). Kluwer Academic Publishers, Dordrecht (1999) 503–549.

[18] E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990) 55–61.

[19] E. Pardoux and A. Răşcanu, Backward stochastic differential equations with subdifferential operator and related variational inequalities. Stoch. Process. Appl. 76 (1998) 191–215.

[20] E. Pardoux and A. Răşcanu, Backward stochastic variational inequalities. Stochastics 67 (1999) 159–167.

[21] E. Pardoux and A. Răşcanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Vol. 69 of Springer Series: Stochastic Modelling and Applied Probability. Springer, Berlin (2014).

[22] A. Răşcanu, Existence for a class of stochastic parabolic variational inequalities. Stochastics 5 (1981) 201–239.

[23] A. Rozkosz and L. Słomiński, L$$ solutions of reflected BSDEs under monotonicity condition. Stoch. Process. Appl. 122 (2012) 3875–3900.

[24] A. Rozkosz and L. Słomiński, Stochastic representation of entropy solutions of semilinear elliptic obstacle problems with measure data. Electr. J. Probab. 17 (2012) 1–27.

Cité par Sources :