When the temperature of a trapped Bose gas is below the Bose-Einstein transition temperature and above absolute zero, the gas is composed of two distinct components: the Bose-Einstein condensate and the cloud of thermal excitations. The dynamics of the excitations can be described by quantum Boltzmann models. We establish a connection between quantum Boltzmann models and chemical reaction networks. We prove that the discrete differential equations for these quantum Boltzmann models converge to an equilibrium point. Moreover, this point is unique for all initial conditions that satisfy the same conservation laws. In the proof, we then employ a toric dynamical system approach, similar to the one used to prove the global attractor conjecture, to study the convergence to equilibrium of quantum kinetic equations.
Accepté le :
Première publication :
Publié le :
Keywords: Quantum Boltzmann equation, dynamical systems, bosons, Bose-Einstein condensate, rate of convergence to equilibrium, global attractor conjecture, mass-action kinetics, power law systems, biochemical networks, Petri net
@article{COCV_2021__27_1_A85_0,
author = {Craciun, Gheorghe and Tran, Minh-Binh},
editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
title = {A reaction network approach to the convergence to equilibrium of quantum {Boltzmann} equations for {Bose} gases},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021079},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021079/}
}
TY - JOUR AU - Craciun, Gheorghe AU - Tran, Minh-Binh ED - Buttazzo, G. ED - Casas, E. ED - de Teresa, L. ED - Glowinski, R. ED - Leugering, G. ED - Trélat, E. ED - Zhang, X. TI - A reaction network approach to the convergence to equilibrium of quantum Boltzmann equations for Bose gases JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021079/ DO - 10.1051/cocv/2021079 LA - en ID - COCV_2021__27_1_A85_0 ER -
%0 Journal Article %A Craciun, Gheorghe %A Tran, Minh-Binh %E Buttazzo, G. %E Casas, E. %E de Teresa, L. %E Glowinski, R. %E Leugering, G. %E Trélat, E. %E Zhang, X. %T A reaction network approach to the convergence to equilibrium of quantum Boltzmann equations for Bose gases %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021079/ %R 10.1051/cocv/2021079 %G en %F COCV_2021__27_1_A85_0
Craciun, Gheorghe; Tran, Minh-Binh. A reaction network approach to the convergence to equilibrium of quantum Boltzmann equations for Bose gases. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 83. doi: 10.1051/cocv/2021079
[1] , and , The Cauchy problem and BEC stability for the quantum Boltzmann-condensation system for bosons at very low temperature. Preprint (2016). | arXiv
[2] , A proof of the global attractor conjecture in the single linkage class case. SIAM J. Appl. Math. 71 (2011) 1487–1508.
[3] , and , Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72 (2010) 1947–1970.
[4] , and , Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws. SIAM J. Appl. Math. 71 (2011) 128–146.
[5] and , Bose condensates in interaction with excitations: a kinetic model. Commun. Math. Phys. 310 (2012) 765–788.
[6] and , A Milne problem from a Bose condensate with excitations. Kinet. Relat. Models 6 (2013) 671–686.
[7] and , Bose condensates in interaction with excitations: a two-component space-dependent model close to equilibrium. J. Stat. Phys. 160 (2015) 209–238.
[8] and , Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements. Commun. Math. Sci. 7 (2009) 867–900.
[9] , Half-space problems for a linearized discrete quantum kinetic equation. J. Stat. Phys. 159 (2015) 358–379.
[10] , Boundary layers for discrete kinetic models: multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic Related Models 10 (2017) 925.
[11] , Neuer Beweis zweier Satze uber das Warmegleichgewicht unter mehratomigen Gas-molekulen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien (1887) 153–164.
[12] and , The spatially homogeneous Boltzmann equation for Bose-Einstein particles: rate of strong convergence to equilibrium. Preprint (2018). | arXiv
[13] , Polynomial dynamical systems, reaction networks, and toric differential inclusions. SIAM J. Appl. Algebra Geometry 3 (2019) 87–106.
[14] , Toric differential inclusions and a proof of the global attractor conjecture. Submitted..
[15] , , and , Toric dynamical systems. J. Symbolic Comput. 44 (2009) 1551–1565.
[16] and , Multiple equilibria in complex chemical reaction networks. I. The injectivity property. SIAM J. Appl. Math. 65 (2005) 1526–1546.
[17] , and , Persistence and permanence of mass-action and power-law dynamical systems. SIAM J. Appl. Math. 73 (2013) 305–329.
[18] and , Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic Related Models 8 (2015) 493–531.
[19] and , Finite time blow-up and condensation for the bosonic Nordheim equation. Invent. Math. 200 (2015) 761–847.
[20] , Lectures on chemical reaction networks. Written version of lectures given at the Mathematical Research Center, University of Wisconsin, Madison WI, 1979. Available at http://www.crnt.osu.edu/LecturesOnReactionNetworks.
[21] , Complex balancing in general kinetic systems. Arch. Ratl. Mech. Anal. 49 (1972/73) 187–194.
[22] , The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ratl. Mech. Anal. 132 (1995) 311–370.
[23] , and , Optimal local well-posedness theory for the kinetic wave equation. J. Funct. Anal. 279 (2020) 108570.
[24] , and , A geometric approach to the global attractor conjecture. SIAM J. Appl. Dyn. Syst. 13 (2014) 758–797.
[25] , and , Bose-condensed gases at finite temperatures. Cambridge University Press, Cambridge (2009).
[26] , and , Bose-condensed gases at finite temperatures. Cambridge University Press, Cambridge (2009).
[27] , Chemical reaction network theory for in-silico biologists. Lecture notes available online at http://vcp.med.harvard.edu/papers.html (2003).
[28] and , Collision integrals in the kinetic equations of dilute Bose-Einstein condensates. Preprint (2012). | arXiv
[29] and , Relaxation rates and collision integrals for Bose-Einstein condensates. Phys. Rev. A 170 (2013) 43–59.
[30] , Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ratl. Mech. Anal. 49 (1972/73) 172–186.
[31] , The dynamics of open reaction systems. In Mathematical aspects of chemical and biochemical problems and quantum chemistry (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1974). SIAM–AMS Proceedings, Vol. VIII. Amer. Math. Soc., Providence, R.I. (1974) 125–137.
[32] and , General mass action kinetics. Arch. Ratl. Mech. Anal. 47 (1972) 81–116.
[33] and , Quantum hydrodynamic approximations to the finite temperature trapped Bose gases. Physica D 380 (2018) 45–57.
[34] and , Transport theory for a weakly interacting condensed Bose gas. Phys. Rev. A 28 (1983) 2576–2579.
[35] and , Transport in a dilute but condensed nonideal Bose gas: kinetic equations. J. Low Temp. Phys. 58 (1985) 301–331.
[36] , On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles. J. Statist. Phys. 116 (2004) 1597–1649.
[37] , The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium. J. Stat. Phys. 119 (2005) 1027–1067.
[38] , The Boltzmann equation for Bose-Einstein particles: condensation in finite time. J. Stat. Phys. 150 (2013) 1138–1176.
[39] and , Uniform in time lower bound for solutions to a quantum Boltzmann equation of bosons. Arch. Ratl. Mech. Anal. 231 (2019) 63–89.
[40] , Transport phenomena in Einstein–Bose and Fermi–Dirac gases. Proc. Roy. Soc. London A 119 (1928) 689.
[41] and , Vol. 967 of Statistical Physics of Non Equilibrium Quantum Phenomena. Springer Nature (2019).
[42] , A modern course in statistical physics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (2016) fourth edition.
[43] and , Transport theory for a dilute Bose-Einstein condensate. J. Low Temp. Phys. 88 (2013) 053603.
[44] and , A kinetic equation for ultra-low temperature Bose–Einstein condensates. J. Phys. A: Math. Theor. 52 (2019) 063001.
[45] and , On coupling kinetic and Schrodinger equations. J. Differ. Equ. 265 (2018) 2243–2279.
[46] and , On the dynamics of finite temperature trapped Bose gases. Adv. Math. 325 (2018) 533–607.
[47] , Kinetics of the Bose-Einstein condensation. Physica D 239 (2010) 627–634.
[48] , , and , A reaction network approach to the theory of acoustic wave turbulence. J. Differ. Equ. 269 (2020) 4332–52.
[49] and , Boltzmann-type collision operators for Bogoliubov excitations of Bose-Einstein condensates: a unified framework. Phys. Rev. E 101 (2020) 032119.
[50] and , On a thermal cloud - Bose-Einstein condensate coupling system. Eur. Phys. J. Plus 136 (2021) 502.
[51] and , On the kinetic methods in the new statistics and its applications in the electron theory of conductivity. Phys. Rev. 43 (1933) 552–561.
[52] , and , Théorie cinétique d’un gaz de Bose dilué avec condensat. C. R. Acad. Sci. Paris Ser. IIb M’ec. Phys. Astr. 327 (1999) 791–798.
[53] and , Mathematical analysis of chemical reaction systems. Israel J. Chem. 58 (2018) 733–741.
[54] , and , Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys. 116 (1999) 277–345.
Cité par Sources :





