Second order necessary conditions for optimal control problems of evolution equations involving final point equality constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 71

We establish some second order necessary conditions for optimal control problems of evolution equations involving final point equality and inequality constraints. Compared with the existing works, the main difference is due to the presence of end-point equality constraints. With such constraints, we cannot simply use the variational techniques since perturbations of a given control may be no longer admissible. We also cannot use the Ekeland’s variational principle, which is a first order variational principle, to obtain second order necessary conditions. Instead, we combine some inverse mapping theorems on metric spaces and second order linearization of data to obtain our results.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021065
Classification : 49K20
Keywords: Optimal control, time evolution partial differential equation, second order necessary condition, local minimizer
@article{COCV_2021__27_1_A73_0,
     author = {Frankowska, H\'el\`ene and L\"u, Qi},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Second order necessary conditions for optimal control problems of evolution equations involving final point equality constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021065},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021065/}
}
TY  - JOUR
AU  - Frankowska, Hélène
AU  - Lü, Qi
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Second order necessary conditions for optimal control problems of evolution equations involving final point equality constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021065/
DO  - 10.1051/cocv/2021065
LA  - en
ID  - COCV_2021__27_1_A73_0
ER  - 
%0 Journal Article
%A Frankowska, Hélène
%A Lü, Qi
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Second order necessary conditions for optimal control problems of evolution equations involving final point equality constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021065/
%R 10.1051/cocv/2021065
%G en
%F COCV_2021__27_1_A73_0
Frankowska, Hélène; Lü, Qi. Second order necessary conditions for optimal control problems of evolution equations involving final point equality constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 71. doi: 10.1051/cocv/2021065

[1] J.-P. Aubin and H. Frankowska, Set-valued analysis. Springer Science & Business Media (2009).

[2] P. Cannarsa, G. Da Prato and H. Frankowska, Domain invariance for local solutions of semilinear evolution equations in Hilbert spaces. J. London Math. Soc. 102 (2020) 287–318.

[3] E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 1431–1454.

[4] E. Casas and F. Tröltzsch, Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J. Control Optim. 13 (2002) 406–431.

[5] E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control. Jahresber. Dtsch. Math.-Ver. 117 (2015) 3–44.

[6] L. C. Evans, Partial differential equations. American Mathematical Society, Providence, RI (2010).

[7] H. Frankowska, High order inverse function theorems. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 283–303.

[8] H. Frankowska, On second-order necessary conditions in optimal control of problems with mixed final point constraints. In Proceedings of 58th IEEE Conference on Decision and Control, Nice, France, December 11-13 (2019), DOI: . | DOI

[9] H. Frankowska, D. Hoehener and D. Tonon, A second-order maximum principle in optimal control under state constraints. Serdica Math. J. 39 (2013) 233–270.

[10] H. Frankowska and N. P. Osmolovskii, Second-order necessary conditions for a strong local minimum in a control problem with general control constraints. Appl. Math. Optim. 80 (2019) 135–164.

[11] H. Frankowska and N. P. Osmolovskii, Distance estimates to feasible controls for systems with final point constraints and second order necessary optimality conditions. Syst. Control Lett. 144 (2020) 104770.

[12] H. Frankowska, H. Zhang and X. Zhang, Necessary optimality conditions for local minimizers of stochastic optimal control problems with state constraints. Trans. Amer. Math. Soc. 372 (2019) 1289–1331.

[13] X. Li and J. Yong, Optimal control theory for infinite dimensional systems. Birkhäuser Boston, Inc., Boston, MA (1995).

[14] X. Liu, Q. Lü and X. Zhang, Finite codimensional controllability, and optimal control problems with endpoint state constraints. J. Math. Pures Appl. 138 (2020) 164–203.

[15] Q. Lü and X. Zhang, General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions. Springer (2014).

[16] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983).

[17] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, Mathematical theory of optimal processes. Interscience Publishers John Wiley & Sons, Inc., New York-London (1962).

[18] J.-P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dynam. Syst. 6 (2000) 431–450.

[19] A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for a parabolic optimal control problem with pointwisecontrol-state constraints. SIAM J. Control Optim. 42 (2003) 138–154.

[20] F. Tröltzsch and D. Wachsmuth, Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations. ESAIM: COCV 12 (2006) 93–119.

[21] J. Yong and X. Zhou, Stochastic controls. Hamiltonian systems and HJB equations. Springer-Verlag, New York (1999).

[22] E. Zuazua, Controllability and observability of partial differential equations: some results and open problems. Vol. 3 of In Handbook of Differential Equations: Evolutionary Equations. Elsevier Science (2006) 527–621.

Cité par Sources :