We give a necessary and sufficient condition, of geometrical type, for the uniform decay of energy of solutions of the linear system of magnetoelasticity in a bounded domain with smooth boundary. A Dirichlet-type boundary condition is assumed. Our strategy is to use microlocal defect measures to show suitable observability inequalities on high-frequency solutions of the Lamé system.
Keywords: Magnetoelasticity, uniform stability, microlocal defect measure
@article{COCV_2021__27_1_A84_0,
author = {Duyckaerts, Thomas},
editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
title = {A geometric condition for the uniform stability of linear magnetoelasticity},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021064},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021064/}
}
TY - JOUR AU - Duyckaerts, Thomas ED - Buttazzo, G. ED - Casas, E. ED - de Teresa, L. ED - Glowinski, R. ED - Leugering, G. ED - Trélat, E. ED - Zhang, X. TI - A geometric condition for the uniform stability of linear magnetoelasticity JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021064/ DO - 10.1051/cocv/2021064 LA - en ID - COCV_2021__27_1_A84_0 ER -
%0 Journal Article %A Duyckaerts, Thomas %E Buttazzo, G. %E Casas, E. %E de Teresa, L. %E Glowinski, R. %E Leugering, G. %E Trélat, E. %E Zhang, X. %T A geometric condition for the uniform stability of linear magnetoelasticity %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021064/ %R 10.1051/cocv/2021064 %G en %F COCV_2021__27_1_A84_0
Duyckaerts, Thomas. A geometric condition for the uniform stability of linear magnetoelasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 82. doi: 10.1051/cocv/2021064
[1] and , Dissipation of energy for magnetoelastic wavec in a conductive medium. Quart. Appl. Math. 55 (1997) 23–39.
[2] , and , Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 305 (1992) 1024–1065.
[3] and , Mesures de défaut de compacité, application au système de Lamé. Ann. Sci. de l’École Normale Supérieure (4) 34 (2001) 817–870. Mesures de défaut de compacité, application au système de Lamé. A paraître aux Annales de L’Ecole Normale Supérieure (1999).
[4] and , Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. (French). Comptes Rendus de l’Académie des Sciences Paris Sér. I Math. 325 (1997) 749–752.
[5] , and Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discr. Continu. Dyn. Syst. 25 (2009) 797–821.
[6] , and Decay rates of magnetoelastic waves in an unbounded conductive medium. Electr. J. Differ. Equ. 2011 (2011) paper no. 127, 14 p.
[7] and , Asymptotic behavior of solutions for the magneto-thermo-elastic system in ℝ3. J. Math. Anal. Appl. 432 (2015) 1200–1215.
[8] and , Polynomial stability to three dimensional magnetoelasticity. Acta Appl. Math. 76 (2003) 265–281.
[9] , Stabilization of the linear system of magnetoelasticity. Preprint (2004). | arXiv
[10] , Microlocal defect measures. Commun. Partial Differ. Equ. 16 (1991) 1761–1794.
[11] , The analysis of linear partial differential operators. III. Vol. 274 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1994).
[12] , Équation des ondes amorties. In Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), vol. 19 of Math. Phys. Stud. Kluwer Acad. Publ., Dordrecht (1996) 73–109.
[13] and , Stabilisation de l’équation des ondes par le bord. Duke Math. J. 86 (1997) 465–491.
[14] and , Null-controllability of a system of linear thermoelasticity. Arch. Ratl. Mech. Anal. 141 (1998) 297–329.
[15] and , Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ratl. Mech. Anal. 148 (1999) 179–231.
[16] , , and , Polynomial stabilization of magnetoelastic plates. IMA J. Appl. Math. 79 (2014) 241–253.
[17] and , Singularities of boundary value problems I. Commun. Pure Appl. Math. 16 (1991) 1761–1794.
[18] and , Polynomial stability in two-dimensional magnetoelasticity. IMA J. Appl. Math. 66 (2001) 269–283.
[19] and , Large-time behavior for linear systems. Adv. Differ. Equ. 6 (2001) 359–384.
[20] and , Energy decay of magnetoelastic waves in a bounded conductive medium. Asymp. Anal. 18 (1998) 349–362.
[21] and , Stability in thermoelasticity of type III. Discr. Continu. Dyn. Syst. Ser. B 3 (2003) 383–400.
[22] , H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinbur. 115-A (1990) 193–230.
[23] , Navier-Stokes equations. Studies in mathematics and its applications, North-Holland 1979.
[24] , and , Decay of solutions of the system of thermoelasticity of type III. Commun. Contemp. Math. 5 (2003) 25–83.
Cité par Sources :





