A geometric condition for the uniform stability of linear magnetoelasticity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 82

We give a necessary and sufficient condition, of geometrical type, for the uniform decay of energy of solutions of the linear system of magnetoelasticity in a bounded domain with smooth boundary. A Dirichlet-type boundary condition is assumed. Our strategy is to use microlocal defect measures to show suitable observability inequalities on high-frequency solutions of the Lamé system.

DOI : 10.1051/cocv/2021064
Classification : 74F15, 35Q74, 35M10, 35L05
Keywords: Magnetoelasticity, uniform stability, microlocal defect measure
@article{COCV_2021__27_1_A84_0,
     author = {Duyckaerts, Thomas},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {A geometric condition for the uniform stability of linear magnetoelasticity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021064},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021064/}
}
TY  - JOUR
AU  - Duyckaerts, Thomas
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - A geometric condition for the uniform stability of linear magnetoelasticity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021064/
DO  - 10.1051/cocv/2021064
LA  - en
ID  - COCV_2021__27_1_A84_0
ER  - 
%0 Journal Article
%A Duyckaerts, Thomas
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T A geometric condition for the uniform stability of linear magnetoelasticity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021064/
%R 10.1051/cocv/2021064
%G en
%F COCV_2021__27_1_A84_0
Duyckaerts, Thomas. A geometric condition for the uniform stability of linear magnetoelasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 82. doi: 10.1051/cocv/2021064

[1] E. Andreou and G. Dassios, Dissipation of energy for magnetoelastic wavec in a conductive medium. Quart. Appl. Math. 55 (1997) 23–39.

[2] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 305 (1992) 1024–1065.

[3] N. Burq and G. Lebeau, Mesures de défaut de compacité, application au système de Lamé. Ann. Sci. de l’École Normale Supérieure (4) 34 (2001) 817–870. Mesures de défaut de compacité, application au système de Lamé. A paraître aux Annales de L’Ecole Normale Supérieure (1999).

[4] N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. (French). Comptes Rendus de l’Académie des Sciences Paris Sér. I Math. 325 (1997) 749–752.

[5] R. C. Charão, J. C. Oliveira and G. Perla Menzala Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discr. Continu. Dyn. Syst. 25 (2009) 797–821.

[6] R. C. Charão, J. C. Oliveira and G. Perla Menzala Decay rates of magnetoelastic waves in an unbounded conductive medium. Electr. J. Differ. Equ. 2011 (2011) paper no. 127, 14 p.

[7] C. R. Da Luz and J. C. Oliveira, Asymptotic behavior of solutions for the magneto-thermo-elastic system in ℝ3. J. Math. Anal. Appl. 432 (2015) 1200–1215.

[8] M. De Lima Santos and J. E. Muñoz Rivera, Polynomial stability to three dimensional magnetoelasticity. Acta Appl. Math. 76 (2003) 265–281.

[9] T. Duyckaerts, Stabilization of the linear system of magnetoelasticity. Preprint (2004). | arXiv

[10] P. Gérard, Microlocal defect measures. Commun. Partial Differ. Equ. 16 (1991) 1761–1794.

[11] L. Hörmander, The analysis of linear partial differential operators. III. Vol. 274 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1994).

[12] G. Lebeau, Équation des ondes amorties. In Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), vol. 19 of Math. Phys. Stud. Kluwer Acad. Publ., Dordrecht (1996) 73–109.

[13] G. Lebeau and L. Robbiano, Stabilisation de l’équation des ondes par le bord. Duke Math. J. 86 (1997) 465–491.

[14] G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Ratl. Mech. Anal. 141 (1998) 297–329.

[15] G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ratl. Mech. Anal. 148 (1999) 179–231.

[16] T. F. Ma, J. M. Rivera, H. P. Oquendo and F. M. S. Suárez, Polynomial stabilization of magnetoelastic plates. IMA J. Appl. Math. 79 (2014) 241–253.

[17] R. Melrose and J. Sjöstrand, Singularities of boundary value problems I. Commun. Pure Appl. Math. 16 (1991) 1761–1794.

[18] J. E. Muñoz Rivera and R. Racke, Polynomial stability in two-dimensional magnetoelasticity. IMA J. Appl. Math. 66 (2001) 269–283.

[19] J. E. Muñoz Rivera and R. Racke, Magneto-Thermo-Elasticity. Large-time behavior for linear systems. Adv. Differ. Equ. 6 (2001) 359–384.

[20] G. Perla Menzala and E. Zuazua, Energy decay of magnetoelastic waves in a bounded conductive medium. Asymp. Anal. 18 (1998) 349–362.

[21] R. Quintanilla and R. Racke, Stability in thermoelasticity of type III. Discr. Continu. Dyn. Syst. Ser. B 3 (2003) 383–400.

[22] L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinbur. 115-A (1990) 193–230.

[23] R. Temam, Navier-Stokes equations. Studies in mathematics and its applications, North-Holland 1979.

[24] X. Zhang, and E. Zuazua, Decay of solutions of the system of thermoelasticity of type III. Commun. Contemp. Math. 5 (2003) 25–83.

Cité par Sources :