Feedback stabilization of a 3D fluid flow by shape deformations of an obstacle
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 65

We consider a fluid flow in a time dependent domain Ω f (t)=ΩΩ s (t) ¯ 3 , surrounding a deformable obstacle Ω$$(t). We assume that the fluid flow satisfies the incompressible Navier-Stokes equations in Ω$$(t), t > 0. We prove that, for any arbitrary exponential decay rate ω > 0, if the initial condition of the fluid flow is small enough in some norm, the deformation of the boundary Ω$$(t) can be chosen so that the fluid flow is stabilized to rest, and the obstacle to its initial shape and its initial location, with the exponential decay rate ω > 0.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021059
Classification : 93B52, 93C20, 93D15, 35Q30, 76D55, 76D05, 74F10
Keywords: Deformable boundary, feedback control, stabilization, Navier-Stokes equations
@article{COCV_2021__27_1_A67_0,
     author = {Raymond, Jean-Pierre and Vanninathan, Muthusamy},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Feedback stabilization of a {3D} fluid flow by shape deformations of an obstacle},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021059},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021059/}
}
TY  - JOUR
AU  - Raymond, Jean-Pierre
AU  - Vanninathan, Muthusamy
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Feedback stabilization of a 3D fluid flow by shape deformations of an obstacle
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021059/
DO  - 10.1051/cocv/2021059
LA  - en
ID  - COCV_2021__27_1_A67_0
ER  - 
%0 Journal Article
%A Raymond, Jean-Pierre
%A Vanninathan, Muthusamy
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Feedback stabilization of a 3D fluid flow by shape deformations of an obstacle
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021059/
%R 10.1051/cocv/2021059
%G en
%F COCV_2021__27_1_A67_0
Raymond, Jean-Pierre; Vanninathan, Muthusamy. Feedback stabilization of a 3D fluid flow by shape deformations of an obstacle. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 65. doi: 10.1051/cocv/2021059

[1] J. T. Beale, The initial value problem for the Navier-Stokes equations with a free surface. Commun. Pure Appl. Math. 34 (1981) 359–392.

[2] A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Second edition, Birkhäuser (2006).

[3] M. Boulakia, S. Guerrero and T. Takahashi, Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure. Nonlinearity 32 (2019) 3548–3592.

[4] D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ratl. Mech. Anal. 176 (2005) 25–102.

[5] P. Cumsille and T. Takahashi, Wellposedness for the system modeling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Math. J. 58 (2008) 961–992.

[6] S. Ervedoza and E. Zuazua, A systematic method for building smooth controls for smooth data. Discr. Continu. Dyn. Syst. B 14 (2010) 1375–1401.

[7] M. Fournié, M. Ndiaye and J.-P. Raymond, Feedback stabilization of a two-dimensional fluid-structure interaction system with mixed boundary conditions. SIAM J. Control Optim. 57 (2019) 3322–3359.

[8] G. Grubb and V. A. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods. Math. Scand. 69 (1991) 217–290.

[9] J. Haubner, M. Ulbrich and S. Ulbrich, Analysis of shape optimization problems for unsteady fluid-structure interaction. Inverse Problems 36 (2020) 034001.

[10] J. Haubner, Shape optimization for fluid-structure interaction, Ph.D. Thesis, TUM, Germany (2020).

[11] M. Hieber and M. Murata, The Lp-approach to the fluid-rigid body interaction problem for compressible fluids. Evolut. Equ. Control Theory 4 (2015) 69–87.

[12] M. Ignatova, I. Kukavica, I. Lasiecka and A. Tuffaha, On well-posedness for a free boundary fluid-structure model. J. Math. Phys. 53 (2012) 115624-1–13.

[13] M. Ignatova, I. Kukavica, I. Lasiecka and A. Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model. Nonlinearity 27 (2014) 467–499.

[14] I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary. Nonlinearity 24 (2011) 159–176.

[15] I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem. Discrete Cont. Dyn. Syst. 32 (2012) 1355–1389.

[16] I. Kukavica and A. Tuffaha, Regularity of solutions to a free boundary problem of fluid-structure interaction. Indiana Univ. Math. J. 61 (2012) 1817–1859.

[17] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes, Vol. 2, Dunod, Paris (1968).

[18] I. Lasiecka and Y. Lu, Interface feedback control stabilization of a nonlinear fluid–structure interaction. Nonlinear Anal. 75 (2012) 1449–1460.

[19] D. Maity, J.-P. Raymond and A. Roy, Maximal-in-time existence of strong solutions of a 3D fluid structure interaction model. SIAM J. Math. Anal. 52 (2020) 6338–6378.

[20] P. A. Nguyen and J.-P. Raymond, Boundary stabilization of the Navier-Stokes equations in the case of mixed boundary conditions. SIAM J. Control Optim. 53 (2015) 3006–3039.

[21] J.-P. Raymond, Feedback stabilization of a fluid-structure model. SIAM J. Control Optim. 48 (2010) 5398–5443.

[22] J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations. J. Math. Pures Appl. 87 (2007) 627–669.

[23] J.-P. Raymond, Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete Continu. Dyn. Syst. B 14 (2010) 1537–1564.

[24] J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discr. Continu. Dyn. Syst. A 27 (2010) 1159–1187.

[25] J.-P. Raymond and M. Vanninathan, A fluid-structure model coupling the Navier-Stokes equations and the Lamé system. J. Math. Pures Appl. 102 (2014) 546–596.

[26] J.-P. Raymond, Stabilizability of infinite-dimensional systems by finite-dimensional controls. Comput. Methods Appl. Math. 19 (2019) 797–811.

[27] V. A. Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval. St. Petersburg Math. J. 3 (1992) 189–220.

[28] T. Takahashi, M. Tucsnak and G. Weiss, Stabilization of a fluid-rigid body system. J. Differ. Equ. 259 (2015) 6459–6493.

[29] R. Temam, Navier-Stokes equations. Theory and numerical analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI (2001).

[30] R. Temam, Navier-Stokes equations and nonlinear functional analysis, Second edition. CBMS-NSF Regional Conference Series in Applied Mathematics, 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1995).

[31] G. Troianiello, Elliptic differential equations and obstacle problems. The University Series in Mathematics. Plenum Press, New York (1987).

[32] X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Ratl. Mech. Anal. 184 (2007) 49–120.

[33] X. Zhang and E. Zuazua, Asymptotic behavior of a hyperbolic-parabolic coupled system arising in fluid-structure interaction. Free Boundary Problem. Boarding school. Ser. Number. Math. 154. Birkhäuser, Basel (2007) 445–455.

Cité par Sources :

The authors are members of an IFCAM-project, Indo-French Centre for Applied Mathematics - UMI IFCAM, Bangalore, India, supported by DST - IISc - CNRS - and Université Paul Sabatier Toulouse III. The first author is supported by the ANR-project IFSMACS (ANR 15-CE40.0010).