In this paper, we study an optimal control problem associated to a 3D-chemotaxis-Navier-Stokes model. First we prove the existence of global weak solutions of the state equations with a linear reaction term on the chemical concentration equation, and an external source on the velocity equation, both acting as controls on the system. Second, we establish a regularity criterion to get global-in-time strong solutions. Finally, we prove the existence of an optimal solution, and we establish a first-order optimality condition.
Keywords: Optimal control problem, chemotaxis-fluid model, optimality conditions
@article{COCV_2021__27_1_A60_0,
author = {L\'opez-R{\'\i}os, J. and Villamizar-Roa, \'Elder J.},
title = {An optimal control problem related to a {3D-chemotaxis-Navier-Stokes} model},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021055},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021055/}
}
TY - JOUR AU - López-Ríos, J. AU - Villamizar-Roa, Élder J. TI - An optimal control problem related to a 3D-chemotaxis-Navier-Stokes model JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021055/ DO - 10.1051/cocv/2021055 LA - en ID - COCV_2021__27_1_A60_0 ER -
%0 Journal Article %A López-Ríos, J. %A Villamizar-Roa, Élder J. %T An optimal control problem related to a 3D-chemotaxis-Navier-Stokes model %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021055/ %R 10.1051/cocv/2021055 %G en %F COCV_2021__27_1_A60_0
López-Ríos, J.; Villamizar-Roa, Élder J. An optimal control problem related to a 3D-chemotaxis-Navier-Stokes model. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 58. doi: 10.1051/cocv/2021055
[1] and , Sobolev spaces. Elsevier (2003).
[2] and , Some optimal control problems of multistate equations appearing in fluid mechanics. RAIRO Modél. Math. Anal. Numér. 27 (1993) 223–247.
[3] , Global (weak) solution of the chemotaxis-Navier-Stokes equations with non-homogeneous boundary conditions and logistic growth. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis 33 (2016) 1329–1352.
[4] and , Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55 (2016) 107.
[5] , An optimal control problem governed by the evolution Navier-Stokes equations. In Optimal control of viscous flows, Frontiers in applied mathematics, edited by . SIAM, Philadelphia (1998).
[6] , Analysis of the velocity tracking control problem for the 3D evolutionary Navier–Stokes equations, optimal control of viscous flow. SIAM J. Control Optim. 54 (2016) 99–128.
[7] and , Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 15 (2005) 1685–1734.
[8] and , A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10 (1993) 149–168.
[9] and , A uniform controllability result for the Keller-Segel system. Asymptot. Anal. 92 (2015) 313–338.
[10] and , A controllability result for a chemotaxis-fluid model. J. Differ. Equ. 262 (2017) 4863–4905.
[11] and , An extension criterion for the local in time solution of the chemotaxis Navier-Stokes equations in the critical Besov spaces. Ann. Uni. Ferrara. Sez. VII Sci. Mat. 63 (2017) 277–288.
[12] and , Global existence result for chemotaxis Navier-Stokes equations in the critical Besov spaces. J. Math. Anal. Appl. 446 (2017) 1415–1426.
[13] , and , Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Commun. Pure Appl. Anal. 14 (2015) 2453–2464.
[14] , , Existence of solutions and optimal control for a model of tissue invasion by solid tumours. J. Math. Anal. Appl. 421 (2015) 842–877.
[15] , , , and , Self–concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93 (2004) 98–103.
[16] and , A note on global existence for the chemotaxis–Stokes model with nonlinear diffusion. Int. Math. Res. Notices 2014 (2012) 1833–1852.
[17] , and , Global existence for an attraction-repulsion chemotaxis-fluid model with logistic source. Discrete Contin. Dyn. Syst. Ser. B 24 (2019) 423–447.
[18] , and , Global existence for an attraction-repulsion chemotaxis-fluid system in a framework of Besov-Morrey type. J. Math. Fluid Mech. 22 (2020) Paper No. 63.
[19] , , , , Numerical analysis for a chemotaxis-Navier-Stokes system. ESAIM Math. Model. Numer. Anal. 55 (2021) S417–S445.
[20] and , Singular limits in thermodynamics of viscous fluids. Adv. Math. Fluid Mech. (2009).
[21] and , Global well-posedness and asymptotic behavior in Besov-Morrey spaces for chemotaxis-Navier-Stokes fluids. J. Math. Phys. 60 (2019) 061502.
[22] and , Optimal control of a chemotaxis system. Quart. Appl. Math. 61 (2003) 193–211.
[23] , Optimal control of distributed systems. Theory and applications. Trans. Math. Monographs 187 (2000).
[24] , and , Optimal bilinear control problem related to a chemo-repulsion system in 2D domains. ESAIM: COCV 26 (2020) Paper No. 29, 21 pp.
[25] , and , A regularity criterion for a 3D chemo-repulsion system and its application to a bilinear optimal control problem. SIAM J. Control Optim. 58 (2020) 1457–1490.
[26] , and , On a bi-dimensional chemo-repulsion model with nonlinear production and a related optimal control problem. Acta Appl. Math. 170 (2020) 963–979.
[27] , Elliptic Problems in Nonsmooth Domains. Pitman Advanced Publishing Program, Boston (1985).
[28] , Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discr. Continu. Dyn. Syst. A 35 (2015) 3463–3482.
[29] , and , Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains. Asympt. Anal. 92 (2015) 249–258.
[30] , and , Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid. J. Funct. Anal. 270 (2016) 1663–1683.
[31] and , Problèmes aux limites non homogènes et applications. Vol. 1. Travaux et recherches mathématiques, No. 17 Dunod, Paris (1968).
[32] and , Non-homogeneous boundary value problems and applications. Springer, Berlin (1972).
[33] , Quelques méthodes de résolution des problemes aux limites non linéaires. Dunod, Paris (1969).
[34] , Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Models Methods Appl. Sci. 26 (2016) 2071–2109.
[35] , and , Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49 (2004) 111–187.
[36] , and , A boundary control problem for micropolar fluids. J. Optim. Theory Appl. 169 (2016) 349–369.
[37] , On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (1959) 115–162.
[38] and , Maximum Principles in Differential Equations. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1967).
[39] , , and , On a distributed control problem for a coupled chemotaxis-fluid model. Discrete Contin. Dyn. Syst. B 23 (2018) 557–571.
[40] and , Optimal control of Keller-Segel equations. J. Math. Anal. Appl. 256 (2001) 45–66.
[41] , Compact sets in space L$$(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96.
[42] and , Generic solvability of the equations of Navier-Stokes. Hiroshima Math. J. 17 (1987) 613–625.
[43] , The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001).
[44] and , Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252 (2012) 2520–2543.
[45] and , Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 30 (2013) 157–178.
[46] , Vol. 343 of Navier-Stokes equations: theory and numerical analysis. American Mathematical Society (2001).
[47] , , , , and , Bacterial swimming and oxygen transportnear contact lines. Proc. Natl. Acad. Sci. USA 102 (2005) 2277–2282.
[48] , and , Model and analysis of chemotactic bacterial patterns in a liquid medium. J. Math. Biol. 38 (1999) 359–375.
[49] , Global large-data solutions in a chemotaxis–(Navier–)Stokes system model-ing cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37 (2012) 319–351.
[50] , Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Variat. Partial Differ. Equ. 54 (2015) 3789–3828.
[51] , Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis 33 (2016) 1329–1352.
[52] , Stabilization in a two-dimensional chemotaxis–Navier–Stokes system. Arch. Ration. Mech. Anal. 211 (2014) 455–487.
[53] , How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? Trans. Am. Math. Soc. 369 (2017) 3067–3125.
[54] , Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components. J. Evol. Equ. 18 (2018) 1267–1289.
[55] , , , , and , Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68 (1995) 2181–2189.
[56] , Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces. Nonlinear Anal.: Real World Appl. 17 (2014) 89–100.
[57] and . Convergence rates of solutions for a two-dimensional chemotaxis–Navier–Stokes system. Discr. Contin. Dynam. Syst. Ser. B 20 (2015) 2751–2759.
[58] and , Global weak solutions for the three-dimensional chemotaxis-Navier–Stokes system with nonlinear diffusion. J. Differ. Equ. 259 (2015) 3730–3754.
Cité par Sources :
J. López-Ríos was supported by MINCIENCIAS, convocatoria 848-2019, posdoc project Fondo Nacional de Financiamiento Para la Ciencia, la Tecnología y la Innovación “Francisco José de Caldas”, number 80740-067-2020.
E.J. Villamizar-Roa was supported by Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander, Project “Estudio teórico de problemas de quimiotaxis-haptotaxis en dominios no acotados”, code C-2020-05.





