An optimal control problem related to a 3D-chemotaxis-Navier-Stokes model
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 58

In this paper, we study an optimal control problem associated to a 3D-chemotaxis-Navier-Stokes model. First we prove the existence of global weak solutions of the state equations with a linear reaction term on the chemical concentration equation, and an external source on the velocity equation, both acting as controls on the system. Second, we establish a regularity criterion to get global-in-time strong solutions. Finally, we prove the existence of an optimal solution, and we establish a first-order optimality condition.

DOI : 10.1051/cocv/2021055
Classification : 35Q35, 35K51, 49J20, 49K20, 76D55
Keywords: Optimal control problem, chemotaxis-fluid model, optimality conditions
@article{COCV_2021__27_1_A60_0,
     author = {L\'opez-R{\'\i}os, J. and Villamizar-Roa, \'Elder J.},
     title = {An optimal control problem related to a {3D-chemotaxis-Navier-Stokes} model},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021055},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021055/}
}
TY  - JOUR
AU  - López-Ríos, J.
AU  - Villamizar-Roa, Élder J.
TI  - An optimal control problem related to a 3D-chemotaxis-Navier-Stokes model
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021055/
DO  - 10.1051/cocv/2021055
LA  - en
ID  - COCV_2021__27_1_A60_0
ER  - 
%0 Journal Article
%A López-Ríos, J.
%A Villamizar-Roa, Élder J.
%T An optimal control problem related to a 3D-chemotaxis-Navier-Stokes model
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021055/
%R 10.1051/cocv/2021055
%G en
%F COCV_2021__27_1_A60_0
López-Ríos, J.; Villamizar-Roa, Élder J. An optimal control problem related to a 3D-chemotaxis-Navier-Stokes model. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 58. doi: 10.1051/cocv/2021055

[1] R. Adams and J. Fournier, Sobolev spaces. Elsevier (2003).

[2] F. Abergel and E. Casas, Some optimal control problems of multistate equations appearing in fluid mechanics. RAIRO Modél. Math. Anal. Numér. 27 (1993) 223–247.

[3] M. Braukhoff, Global (weak) solution of the chemotaxis-Navier-Stokes equations with non-homogeneous boundary conditions and logistic growth. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis 33 (2016) 1329–1352.

[4] X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55 (2016) 107.

[5] E. Casas, An optimal control problem governed by the evolution Navier-Stokes equations. In Optimal control of viscous flows, Frontiers in applied mathematics, edited by S. S. Sritharan. SIAM, Philadelphia (1998).

[6] E. Casas, Analysis of the velocity tracking control problem for the 3D evolutionary Navier–Stokes equations, optimal control of viscous flow. SIAM J. Control Optim. 54 (2016) 99–128.

[7] M. A. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 15 (2005) 1685–1734.

[8] M. A. Chaplain and A. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10 (1993) 149–168.

[9] F. W. Chaves-Silva and S. Guerrero, A uniform controllability result for the Keller-Segel system. Asymptot. Anal. 92 (2015) 313–338.

[10] F. W. Chaves-Silva and S. Guerrero, A controllability result for a chemotaxis-fluid model. J. Differ. Equ. 262 (2017) 4863–4905.

[11] H. J. Choe and B. Lkhagvasuren, An extension criterion for the local in time solution of the chemotaxis Navier-Stokes equations in the critical Besov spaces. Ann. Uni. Ferrara. Sez. VII Sci. Mat. 63 (2017) 277–288.

[12] H. J. Choe and B. Lkhagvasuren, Global existence result for chemotaxis Navier-Stokes equations in the critical Besov spaces. J. Math. Anal. Appl. 446 (2017) 1415–1426.

[13] H. J. Choe, B. Lkhagvasuren and M. Yang, Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Commun. Pure Appl. Anal. 14 (2015) 2453–2464.

[14] A. De Araujo, P. M. Magalhaes, Existence of solutions and optimal control for a model of tissue invasion by solid tumours. J. Math. Anal. Appl. 421 (2015) 842–877.

[15] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein and J. O. Kessler, Self–concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93 (2004) 98–103.

[16] R. Duan and Z. Xiang, A note on global existence for the chemotaxis–Stokes model with nonlinear diffusion. Int. Math. Res. Notices 2014 (2012) 1833–1852.

[17] A. Duarte-Rodríguez, L. C. F. Ferreira and E. J. Villamizar-Roa, Global existence for an attraction-repulsion chemotaxis-fluid model with logistic source. Discrete Contin. Dyn. Syst. Ser. B 24 (2019) 423–447.

[18] A. Duarte-Rodríguez, L. C. F. Ferreira and E. J. Villamizar-Roa, Global existence for an attraction-repulsion chemotaxis-fluid system in a framework of Besov-Morrey type. J. Math. Fluid Mech. 22 (2020) Paper No. 63.

[19] A. Duarte-Rodríguez, M. A. Rodríguez-Bellido, D. A. Rueda-Gómez, E. J. Villamizar-Roa, Numerical analysis for a chemotaxis-Navier-Stokes system. ESAIM Math. Model. Numer. Anal. 55 (2021) S417–S445.

[20] E. Feireisl and A. Novotný, Singular limits in thermodynamics of viscous fluids. Adv. Math. Fluid Mech. (2009).

[21] L. C. F. Ferreira and M. Postigo, Global well-posedness and asymptotic behavior in Besov-Morrey spaces for chemotaxis-Navier-Stokes fluids. J. Math. Phys. 60 (2019) 061502.

[22] K. R. Fister and C. M. Mccarthy, Optimal control of a chemotaxis system. Quart. Appl. Math. 61 (2003) 193–211.

[23] A. Fursikov, Optimal control of distributed systems. Theory and applications. Trans. Math. Monographs 187 (2000).

[24] F. Guillén-González, E. Mallea-Zepeda and M. A. Rodríguez-Bellido, Optimal bilinear control problem related to a chemo-repulsion system in 2D domains. ESAIM: COCV 26 (2020) Paper No. 29, 21 pp.

[25] F. Guillén-González, E. Mallea-Zepeda and M. A. Rodríguez-Bellido, A regularity criterion for a 3D chemo-repulsion system and its application to a bilinear optimal control problem. SIAM J. Control Optim. 58 (2020) 1457–1490.

[26] F. Guillén-González, E. Mallea-Zepeda and E. J. Villamizar-Roa, On a bi-dimensional chemo-repulsion model with nonlinear production and a related optimal control problem. Acta Appl. Math. 170 (2020) 963–979.

[27] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Advanced Publishing Program, Boston (1985).

[28] S. Ishida, Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discr. Continu. Dyn. Syst. A 35 (2015) 3463–3482.

[29] J. Jiang, H. Wu and S. Zheng, Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains. Asympt. Anal. 92 (2015) 249–258.

[30] H. Kozono, M. Masanari and Y. Sugiyama, Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid. J. Funct. Anal. 270 (2016) 1663–1683.

[31] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1. Travaux et recherches mathématiques, No. 17 Dunod, Paris (1968).

[32] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Springer, Berlin (1972).

[33] J.-L. Lions, Quelques méthodes de résolution des problemes aux limites non linéaires. Dunod, Paris (1969).

[34] J. Lankeit, Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Models Methods Appl. Sci. 26 (2016) 2071–2109.

[35] N. V. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49 (2004) 111–187.

[36] E. Mallea-Zepeda, E. Ortega-Torres and E. J. Villamizar-Roa, A boundary control problem for micropolar fluids. J. Optim. Theory Appl. 169 (2016) 349–369.

[37] L. Nirenberg, On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (1959) 115–162.

[38] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1967).

[39] M. A. Rodríguez-Bellido, D. A. Rueda-Gómez, and E. J. Villamizar-Roa, On a distributed control problem for a coupled chemotaxis-fluid model. Discrete Contin. Dyn. Syst. B 23 (2018) 557–571.

[40] S. Ryu and A. Yagi, Optimal control of Keller-Segel equations. J. Math. Anal. Appl. 256 (2001) 45–66.

[41] J. Simon, Compact sets in space L$$(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96.

[42] H. Sohr and W. Wahl, Generic solvability of the equations of Navier-Stokes. Hiroshima Math. J. 17 (1987) 613–625.

[43] H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001).

[44] Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252 (2012) 2520–2543.

[45] Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 30 (2013) 157–178.

[46] R. Temam, Vol. 343 of Navier-Stokes equations: theory and numerical analysis. American Mathematical Society (2001).

[47] I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transportnear contact lines. Proc. Natl. Acad. Sci. USA 102 (2005) 2277–2282.

[48] R. Tyson, S. Lubkin and J. D. Murray, Model and analysis of chemotactic bacterial patterns in a liquid medium. J. Math. Biol. 38 (1999) 359–375.

[49] M. Winkler, Global large-data solutions in a chemotaxis–(Navier–)Stokes system model-ing cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37 (2012) 319–351.

[50] M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Variat. Partial Differ. Equ. 54 (2015) 3789–3828.

[51] M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis 33 (2016) 1329–1352.

[52] M. Winkler, Stabilization in a two-dimensional chemotaxis–Navier–Stokes system. Arch. Ration. Mech. Anal. 211 (2014) 455–487.

[53] M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? Trans. Am. Math. Soc. 369 (2017) 3067–3125.

[54] M. Winkler, Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components. J. Evol. Equ. 18 (2018) 1267–1289.

[55] D. Woodward, R. Tyson, M. Myerscough, J. D. Murray, E. Budrene and H. Berg, Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68 (1995) 2181–2189.

[56] Q. Zhang, Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces. Nonlinear Anal.: Real World Appl. 17 (2014) 89–100.

[57] Q. Zhang and Y. Li. Convergence rates of solutions for a two-dimensional chemotaxis–Navier–Stokes system. Discr. Contin. Dynam. Syst. Ser. B 20 (2015) 2751–2759.

[58] Q. Zhang and Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier–Stokes system with nonlinear diffusion. J. Differ. Equ. 259 (2015) 3730–3754.

Cité par Sources :

J. López-Ríos was supported by MINCIENCIAS, convocatoria 848-2019, posdoc project Fondo Nacional de Financiamiento Para la Ciencia, la Tecnología y la Innovación “Francisco José de Caldas”, number 80740-067-2020.

E.J. Villamizar-Roa was supported by Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander, Project “Estudio teórico de problemas de quimiotaxis-haptotaxis en dominios no acotados”, code C-2020-05.