Strong rates of convergence for a space-time discretization of the backward stochastic heat equation, and of a linear-quadratic control problem for the stochastic heat equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 54

We verify strong rates of convergence for a time-implicit, finite-element based space-time discretization of the backward stochastic heat equation, and the forward-backward stochastic heat equation from stochastic optimal control. The fully discrete version of the forward-backward stochastic heat equation is then used within a gradient descent algorithm to approximately solve the linear-quadratic control problem for the stochastic heat equation driven by additive noise. This work is thus giving a theoretical foundation for the computational findings in Dunst and Prohl, SIAM J. Sci. Comput. 38 (2016) A2725–A2755.

DOI : 10.1051/cocv/2021052
Classification : 49J20, 65M60, 93E20
Keywords: Strong error estimate with rates, backward stochastic heat equation, stochastic linear quadratic problem, forward-backward stochastic heat equation
@article{COCV_2021__27_1_A56_0,
     author = {Prohl, Andreas and Wang, Yanqing},
     title = {Strong rates of convergence for a space-time discretization of the backward stochastic heat equation, and of a linear-quadratic control problem for the stochastic heat equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021052},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021052/}
}
TY  - JOUR
AU  - Prohl, Andreas
AU  - Wang, Yanqing
TI  - Strong rates of convergence for a space-time discretization of the backward stochastic heat equation, and of a linear-quadratic control problem for the stochastic heat equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021052/
DO  - 10.1051/cocv/2021052
LA  - en
ID  - COCV_2021__27_1_A56_0
ER  - 
%0 Journal Article
%A Prohl, Andreas
%A Wang, Yanqing
%T Strong rates of convergence for a space-time discretization of the backward stochastic heat equation, and of a linear-quadratic control problem for the stochastic heat equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021052/
%R 10.1051/cocv/2021052
%G en
%F COCV_2021__27_1_A56_0
Prohl, Andreas; Wang, Yanqing. Strong rates of convergence for a space-time discretization of the backward stochastic heat equation, and of a linear-quadratic control problem for the stochastic heat equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 54. doi: 10.1051/cocv/2021052

[1] R. Archibald, F. Bao and J. Yong, A stochastic gradient descent approach for stochastic optimal control. East Asian J. Appl. Math. 10 (2020) 635–658.

[2] R. Archibald, F. Bao, J. Yong and T. Zhou, An efficient numerical algorithm for solving data driven feedback control problems J. Sci. Comput. 85 (2020) Paper No. 51, 27.

[3] C. Bender and R. Denk, A forward scheme for backward SDEs. Stochastic Process. Appl. 117 (2007) 1793–1812.

[4] C. Bender and J. Zhang, Time discretization and Markovian iteration for coupled FBSDEs. Ann. Appl. Probab. 18 (2008) 143–177.

[5] A. Bensoussan, Stochastic maximum principle for distributed parameter systems. J. Franklin Inst. 315 (1983) 387–406.

[6] B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stochastic Process. Appl. 111 (2004) 175–206.

[7] J. H. Bramble, J. E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1(Ω). Math. Comp. 71 (2002) 147–156.

[8] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods. Vol. 15 of Texts in Applied Mathematics. Springer, New York, third ed. (2008).

[9] J.-F. Chassagneux, Linear multistep schemes for BSDEs. SIAM J. Numer. Anal. 52 (2014) 2815–2836.

[10] M. Crouzeix and V. Thomée, The stability in L$$ and W$$1 of the L2-projection onto finite element function spaces. Math. Comp. 48 (1987) 521–532.

[11] L. Dai, Y. Zhang and J. Zou, Numerical schemes for forward-backward stochastic differential equations using transposition solutions (2017) preprint.

[12] F. Dou and Q. Lü, Partial approximate controllability for linear stochastic control systems. SIAM J. Control Optim. 57 (2019) 1209–1229.

[13] K. Du, W$$-solutions of parabolic SPDEs in general domains. Stochastic Process. Appl. 130 (2020) 1–19.

[14] K. Du and S. Tang, Strong solution of backward stochastic partial differential equations in C2 domains. Probab. Theory Related Fields 154 (2012) 255–285.

[15] T. Dunst and A. Prohl, The forward-backward stochastic heat equation: numerical analysis and simulation. SIAM J. Sci. Comput. 38 (2016) A2725–A2755.

[16] W. E, M. Hutzenthaler, A. Jentzen and T. Kruse, On multilevel Picard numerical approximations for high-dimensional nonlinearparabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations. J. Sci. Comput. 79 (2019) 1534–1571.

[17] N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71.

[18] E. Gobet, J.-P. Lemor and X. Warin, A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15 (2005) 2172–2202.

[19] B. Gong, W. Liu, T. Tang, W. Zhao and T. Zhou, An efficient gradient projection method for stochastic optimal control problems. SIAM J. Numer. Anal. 55 (2017) 2982–3005.

[20] W. Gong and M. Hinze, Error estimates for parabolic optimal control problems with control and state constraints. Comput. Optim. Appl. 56 (2013) 131–151.

[21] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints. Vol. 23 of Mathematical Modelling: Theory and Applications. Springer, New York (2009).

[22] Y. Hu, D. Nualart and X. Song, Malliavin calculus for backward stochastic differential equations and application to numerical solutions. Ann. Appl. Probab. 21 (2011) 2379–2423.

[23] S. I. Kabanikhin, Inverse and ill-posed problems. Vol. 55 of Inverse and Ill-posed Problems Series. Walter de Gruyter GmbH & Co. KG, Berlin (2012).

[24] Q. Lü, P. Wang, Y. Wang and X. Zhang, Numerics for stochastic distributed parameter control systems: a finite transposition method. (2020). | arXiv

[25] Q. Lü and X. Zhang, General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions. SpringerBriefs in Mathematics, Springer, Cham (2014).

[26] Q. Lü and X. Zhang, Mathematical control theory for stochastic partial differential equations. Springer (in press).

[27] K. Malanowski, Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optim. 8 (1982) 69–95.

[28] R. S. Mcknight and W. E. Bosarge, Jr., The Ritz-Galerkin procedure for parabolic control problems. SIAM J. Control 11 (1973) 510–524.

[29] D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. I. Problems without control constraints. SIAM J. Control Optim. 47 (2008) 1150–1177.

[30] Y. Nesterov, Introductory lectures on convex optimization. Vol. 87 of Applied Optimization. Kluwer Academic Publishers, Boston, MA (2004).

[31] D. Nualart, The Malliavin calculus and related topics. Probability and its Applications (New York), Springer-Verlag, Berlin, second ed. (2006).

[32] A. Rösch, Error estimates for parabolic optimal control problems with control constraints. Z. Anal. Anwendungen 23 (2004) 353–376.

[33] P. Wang and X. Zhang, Numerical solutions of backward stochastic differential equations: a finite transposition method. C. R. Math. Acad. Sci. Paris 349 (2011) 901–903.

[34] Y. Wang, Transposition solutions of backward stochastic differential equations and numerical schemes, Ph.D. Thesis, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (2013).

[35] Y. Wang, A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Math. Control Relat. Fields 6 (2016) 489–515.

[36] Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43 (2005) 1363–1384.

[37] J. Yang, W. Zhao and T. Zhou, A unified probabilistic discretization scheme for FBSDEs: stability, consistency, and convergence analysis. SIAM J. Numer. Anal. 58 (2020) 2351–2375.

[38] J. Yong and X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations. Vol. 43 of Applications of Mathematics (New York). Springer-Verlag, New York (1999).

[39] J. Zhang, A numerical scheme for BSDEs. Ann. Appl. Probab. 14 (2004) 459–488.

[40] X. Zhang, Regularities for semilinear stochastic partial differential equations. J. Funct. Anal. 249 (2007) 454–476.

[41] W. Zhao, L. Chen and S. Peng, A new kind of accurate numerical method for backward stochastic differential equations. SIAM J. Sci. Comput. 28 (2006) 1563–1581.

Cité par Sources :

This work is supported in part by the National Natural Science Foundation of China (11801467, 11701470), and the Chongqing Natural Science Foundation (cstc2018jcyjAX0148).