Minimal time control of exact synchronization for parabolic systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 42

This paper studies a kind of minimal time control problems related to the exact synchronization for a controlled linear system of parabolic equations. Each problem depends on two parameters: the bound of controls and the initial state. The purpose of such a problem is to find a control (from a constraint set) synchronizing components of the corresponding solution vector for the controlled system in the shortest time. In this paper, we build up a necessary and sufficient condition for the optimal time and the optimal control; we also obtain how the existence of optimal controls depends on the above mentioned two parameters.

DOI : 10.1051/cocv/2021043
Classification : 49K20, 93B05, 93B07, 93C20
Keywords: Minimal time control, exact synchronization, minimal norm control, parabolic system
@article{COCV_2021__27_1_A44_0,
     author = {Wang, Lijuan and Yan, Qishu},
     title = {Minimal time control of exact synchronization for parabolic systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021043},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021043/}
}
TY  - JOUR
AU  - Wang, Lijuan
AU  - Yan, Qishu
TI  - Minimal time control of exact synchronization for parabolic systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021043/
DO  - 10.1051/cocv/2021043
LA  - en
ID  - COCV_2021__27_1_A44_0
ER  - 
%0 Journal Article
%A Wang, Lijuan
%A Yan, Qishu
%T Minimal time control of exact synchronization for parabolic systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021043/
%R 10.1051/cocv/2021043
%G en
%F COCV_2021__27_1_A44_0
Wang, Lijuan; Yan, Qishu. Minimal time control of exact synchronization for parabolic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 42. doi: 10.1051/cocv/2021043

[1] F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems. Differ. Equ. Appl. 1 (2009) 427–457.

[2] F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. De Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials. J. Mathématiques Pures Appl. 96 (2011) 555–590.

[3] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston (1993).

[4] C. Bardos and L. Tartar, Sur l’unicité rétrograde des équations parabliques et quelques questions voisines. Arch. Ratl. Mech. Anal. 50 (1973) 10–25.

[5] T. Caraballo, I. D. Chueshov and P. E. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain. SIAM J. Math. Anal. 38 (2007) 1489–1507.

[6] T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 25 (2008) 1–41.

[7] M. A. Demetriou, Synchronization and consensus controllers for a class of parabolic distributed parameter systems. Syst. Control Lett. 62 (2013) 70–76.

[8] J.-M. Coron, Control and Nonlinearity, American Mathematical Society, Providence, RI (2007).

[9] E. Fernandez-Cara and S. Guerreo, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446.

[10] C. Huygens, Oeuvres Complètes, Vol. 15, Swets & Zeitlinger B.V., Amsterdam (1967).

[11] L. Hu, T-T. Li and B. P. Rao, Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Commun. Pure Appl. Anal. 13 (2014) 881–901.

[12] K. Kunisch and L. J. Wang, Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints. J. Math. Anal. Appl. 359 (2012) 114–130.

[13] K. Kunisch and L. J. Wang, Time optimal control of the heat equation with pointwise control constraints. ESAIM: COCV 19 (2013) 460–485.

[14] C.-H. Li and S.-Y. Yang, A graph approach to synchronization in complex of asymmetrically nonlinear coupled dynamical systems. J. London Math. Soc. 83 (2011) 711–732.

[15] T-T. Li and B. P. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls. Chin. Ann. Math. Ser. B 34 (2013) 139–160.

[16] T-T. Li and B. P. Rao, On the state of exact synchronization of a coupled system of wave equations. Comptes Rendus Mathématique-Académie des Sciencs-Paris 352 (2014) 823–829.

[17] T-T. Li, B. P. Rao and L. Hu, Exact boundary synchronization for a coupled system of 1-D wave equations. ESAIM: COCV 20 (2014) 339–361.

[18] T-T. Li, B. P. Rao and Y. M. Wei, Generalized exact boundary synchronization for a coupled system of wave equations. Discrete Continu. Dyn. Syst. 34 (2014) 2893–2905.

[19] T-T. Li and B. P. Rao, On the exactly synchronizable state to a coupled system of wave equations. Portugaliae Math/ 72 (2015) 83–100.

[20] T-T. Li, From phenomena of synchronization to exact synchronization and approximate synchronization for hyperbolic systems. Sci. China Math. 59 (2016) 1–18.

[21] X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995).

[22] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68.

[23] X. L. Lü, L. J. Wang and Q. S. Yan, Computation of time optimal control problems governed by linear ordinary differential equations. J. Sci. Comput. 73 (2017) 1–25.

[24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983).

[25] K. D. Phung and G. S. Wang, An observability estimate for parabolic equations from a measurable set in time and its application. J. Eur. Math. Soc. 15 (2013) 681–703.

[26] S. L. Qin and G. S. Wang, Equivalence between minimal time and minimal norm control problems for the heat equation. SIAM J. Control Optim. 56 (2018) 981–1010.

[27] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739.

[28] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel (2009).

[29] G. S. Wang, L. J. Wang, Y. S. Xu and Y. B. Zhang, Time Optimal Control of Evolution Equations. Birkhäuser, Cham (2018).

[30] G. S. Wang and Y. S. Xu, Equivalence of three different kinds of optimal control problems for heat equations and its applications. SIAM J. Control Optim. 51 (2013) 848–880.

[31] G. S. Wang, Y. S. Xu and Y. B. Zhang, Attainable subspaces and the bang-bang property of time optimal controls for heat equations. SIAM J. Control Optim. 53 (2015) 592–621.

[32] G. S. Wang and Y. B. Zhang, Decompositions and bang-bang properties. Math. Control Related Fields 7 (2017) 73–170.

[33] G. S. Wang and E. Zuazua, On the equivalence of minimal time and minimal norm controls for internally controlled heat equations. SIAM J. Control Optim. 50 (2012) 2938–2958.

[34] L. J. Wang and Q. S. Yan, Optimal control problem for exact synchronization of parabolic system. Math. Control Related Fields 9 (2019) 411–424.

[35] L. J. Wang and Q. S. Yan, Exact synchronization and asymptotic synchronization of linear ODEs. To appear in Science China Mathematics..

[36] N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1961).

[37] C. W. Wu, Synchronization in Coupled Chaotic Circuits and Systems, World Scientific, Singapore (2002).

[38] K. Wu and B. S. Chen, Synchronization of partial differential systems via diffusion coupling. IEEE Trans. Circ. Syst. I 59 (2012) 2655–2668.

Cité par Sources :

The first author was supported by the National Natural Science Foundation of China under grant 11771344.

The second author was supported by the National Natural Science Foundation of China under grant 11701138 and Natural Science Foundation of Hebei Province under grant A2020202033.