The turnpike property in semilinear control
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 48

An exponential turnpike property for a semilinear control problem is proved. The state-target is assumed to be small, whereas the initial datum can be arbitrary. Turnpike results are also obtained for large targets, requiring that the control acts everywhere. In this case, we prove the convergence of the infimum of the averaged time-evolution functional towards the steady one. Numerical simulations are performed.

DOI : 10.1051/cocv/2021036
Classification : 49N99, 35K91
Keywords: Optimal control problems, Long time behavior, the turnpike property, semilinear parabolic equations
@article{COCV_2021__27_1_A50_0,
     author = {Pighin, Dario},
     title = {The turnpike property in semilinear control},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021036},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021036/}
}
TY  - JOUR
AU  - Pighin, Dario
TI  - The turnpike property in semilinear control
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021036/
DO  - 10.1051/cocv/2021036
LA  - en
ID  - COCV_2021__27_1_A50_0
ER  - 
%0 Journal Article
%A Pighin, Dario
%T The turnpike property in semilinear control
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021036/
%R 10.1051/cocv/2021036
%G en
%F COCV_2021__27_1_A50_0
Pighin, Dario. The turnpike property in semilinear control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 48. doi: 10.1051/cocv/2021036

[1] G. Allaire, A. Münch and F. Periago, Long time behavior of a two-phase optimal design for the heat equation. SIAM J. Control Optim. 48 (2010) 5333–5356.

[2] B. D. Anderson and P. V. Kokotovic, Optimal control problems over large time intervals. Automatica 23 (1987) 355–363.

[3] S. Aniţa and D. Tataru, Null controllability for the dissipative semilinear heat equation. Appl. Math. Optim. 46 (2002) 97–105.

[4] V. Barbu, Nonlinear differential equations of monotone types in Banach spaces. Springer Science & Business Media (2010).

[5] L. Boccardo and G. Croce, Elliptic partial differential equations: existence and regularity of distributional solutions. De Gruyter Studies in Mathematics, De Gruyter (2013).

[6] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer New York (2010).

[7] P. Cannarsa and C. Sinestrari, Vvol. 58 of Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Springer Science & Business Media (2004).

[8] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Porretta, Long time average of mean field games., Netw. Heterogen. Media 7 (2012).

[9] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Porretta, Long time average of mean field games with a nonlocal coupling. SIAM J. Control Optim. 51 (2013) 3558–3591.

[10] D. Carlson, A. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control: Deterministic and Stochastic Systems. Springer Berlin Heidelberg (2012).

[11] E. Casas, L. A. Fernandez and J. Yong, Optimal control of quasilinear parabolic equations. Proc. Roy. Soc. Edinburgh Sect. A: Math. 125 (1995) 545–565.

[12] E. Casas and M. Mateos, Optimal Control of Partial Differential Equations, Springer International Publishing, Cham (2017) pp. 3–59.

[13] E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22 (2012) 261–279.

[14] T. Damm, L. Grüne, M. Stieler and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems. SIAM J. Control Optim. 52 (2014) 1935–1957.

[15] R. Dorfman, P. Samuelson and R. Solow, Linear Programming and Economic Analysis. Dover Books on Advanced Mathematics, Dover Publications (1958).

[16] J. Droniou, Intégration et Espaces de Sobolev à Valeurs Vectorielles., Université de Provence..

[17] C. Esteve, D. Pighin, H. Kouhkouh and E. Zuazua, The turnpike property and the long-time behavior of the Hamilton-Jacobi equation..

[18] L. C. Evans, Partial differential equations. Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second ed. (2010).

[19] T. Faulwasser, K. Flaßamp, S. Ober-Blöbaum and K. Worthmann, Towards velocity turnpikes in optimal control of mechanical systems. In Proc. of 11th IFAC Symposium on Nonlinear Control Systems, NOLCOS 2019. IFAC-PapersOnLine 52 (2019) 490–495.

[20] E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. l’Institut Henri Poincaré (C) Non Linear Analysis 17 (2000) 583–616.

[21] L. Grüne and R. Guglielmi, Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems. SIAM J. Control Optim. 56 (2018) 1282–1302.

[22] L. Grüne and M. A. Müller, On the relation between strict dissipativity and turnpike properties. Syst. Control Lett. 90 (2016) 45–53.

[23] L. Grüne, S. Pirkelmann and M. Stieler, Strict dissipativity implies turnpike behavior for time-varying discrete time optimal control problems. in Control Systems and Mathematical Methods in Economics: Essays in Honor of Vladimir M. Veliov. Springer (2018) 195–218.

[24] L. Grüne, M. Schaller and A. Schiela, Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control. SIAM J. Control Optim. 57 (2019) 2753–2774.

[25] L. Grüne, M. Schaller and A. Schiela, Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations. J. Differ. Equ. (2019).

[26] A. Haurie, Optimal control on an infinite time horizon: the turnpike approach. J. Math. Econ. 3 (1976) 81–102.

[27] V. Hernández-Santamaría, M. Lazar and E. Zuazua, Greedy optimal control for elliptic problems and its application to turnpike problems. Numer. Math. 141 (2019) 455–493.

[28] A. Ibañez, Optimal control of the Lotka–Volterra system: turnpike property and numerical simulations. J. Biol. Dyn. 11 (2017) 25–41.

[29] H. Kouhkouh, E. Zuazua, P. Carpentier and F. Santambrogio, Dynamic programming interpretation of turnpike and Hamilton-Jacobi-bellman equation (2018). Available online: http://bit.ly/2R7soRx.

[30] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’Ceva, Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Vol. 23 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I. (1968).

[31] G. Lieberman, Second Order Parabolic Differential Equations. World Scientific (1996).

[32] N. Liviatan and P. A. Samuelson, Notes on turnpikes: stable and unstable. J. Econ. Theory 1 (1969) 454–475.

[33] L. W. Mckenzie, Turnpike theorems for a generalized Leontief model. Econometrica (1963) 165–180.

[34] L. W. Mckenzie, Turnpike theory. Econometrica (1976) 841–865.

[35] S. Mitter and J. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg (1971).

[36] D. Pighin, Nonuniqueness of minimizers for semilinear optimal control problems. arXiv preprint (2020). | arXiv

[37] D. Pighin and N. Sakamoto, The turnpike with lack of observability. arXiv preprint (2020). | arXiv

[38] A. Porretta, On the turnpike property for mean field games. Min. Theory Appl. 3 (2018) 285–312.

[39] A. Porretta and E. Zuazua, Long time versus steady state optimal control. SIAM J. Control Optim. 51 (2013) 4242–4273.

[40] A. Porretta and E. Zuazua, Remarks on long time versus steady state optimal control. in Mathematical Paradigms of Climate Science. Springer (2016) 67–89.

[41] M. Protter and H. Weinberger, Maximum Principles in Differential Equations. Springer, New York (2012).

[42] A. Rapaport and P. Cartigny, Turnpike theorems by a value function approach. ESAIM: COCV 10 (2004) 123–141.

[43] A. Rapaport and P. Cartigny, Competition between most rapid approach paths: necessary and sufficient conditions. J. Optim. Theory Appl. 124 (2005) 1–27.

[44] J.-P. Raymond and H. Zidani, Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39 (1999) 143–177.

[45] R. Rockafellar, Saddle points of Hamiltonian systems in convex problems of Lagrange. J. Optim. Theory Appl. 12 (1973) 367–390.

[46] H. Royden and P. Fitzpatrick, Real Analysis (Classic Version). Math Classics, Pearson Education (2017).

[47] P. A. Samuelson, The general saddlepoint property of optimal-control motions. J. Econ. Theory 5 (1972) 102–120.

[48] J. Simon, Compact sets in the space L$$(0, T; B). Ann. Math. Pura ed Appl. (1986).

[49] E. Trélat and C. Zhang, Integral and measure-turnpike properties for infinite-dimensional optimal control systems. Math. Control Signals Syst. 30 (2018) 3.

[50] E. Trélat, C. Zhang and E. Zuazua, Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces. SIAM J. Control Optim. 56 (2018) 1222–1252.

[51] E. Trélat and E. Zuazua, The turnpike property in finite-dimensional nonlinear optimal control. J. Differ. Equ. 258 (2015) 81–114.

[52] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, Graduate studies in mathematics.

[53] J. Von Neumann A model of general economic equilibrium’, review of economic studies, xiii, 1-9 (translation ofueber ein oekonomisches gleichungssystem und eine verallgemeinerung des brouwerschen fixpunksatzes’, ergebnisse eines mathematischen kolloquiums, 1937, 8, 73-83). Rev. Econ. Stud. 67 (1945) 76–84.

[54] R. Wilde and P. Kokotovic, A dichotomy in linear control theory. IEEE Trans. Autom. Control 17 (1972) 382–383.

[55] Z. Wu, J. Yin and C. Wang, Elliptic & Parabolic Equations. World Scientific (2006).

[56] S. Zamorano, Turnpike property for two-dimensional Navier-Stokes equations. J. Math. Fluid Mech. 20 (2018) 869–888.

[57] A. J. Zaslavski, Vol. 80 of Turnpike properties in the calculus of variations and optimal control. Springer Science & Business Media (2006).

[58] E. Zuazua, Large time control and turnpike properties for wave equations. Annu. Rev. Control (2017).

Cité par Sources :

This project has received funding from the European Research Council (ERC) under the European Unionś Horizon 2020 research and innovation programme (grant agreement No 694126-DYCON).