Regularity for the planar optimal p-compliance problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 35

In this paper we prove a partial C$$ regularity result in dimension N = 2 for the optimal p-compliance problem, extending for p≠2 some of the results obtained by Chambolle et al. (2017). Because of the lack of good monotonicity estimates for the p-energy when p≠2, we employ an alternative technique based on a compactness argument leading to a p-energy decay at any flat point. We finally obtain that every optimal set has no loop, is Ahlfors regular, and is C$$ at 1-a.e. point for every p ∈ (1, +).

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021035
Classification : 49Q20, 35J92
Keywords: Compliance, regularity theory, shape optimization, minimizers
@article{COCV_2021__27_1_A37_0,
     author = {Bulanyi, Bohdan and Lemenant, Antoine},
     title = {Regularity for the planar optimal \protect\emph{p}-compliance problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021035},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021035/}
}
TY  - JOUR
AU  - Bulanyi, Bohdan
AU  - Lemenant, Antoine
TI  - Regularity for the planar optimal p-compliance problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021035/
DO  - 10.1051/cocv/2021035
LA  - en
ID  - COCV_2021__27_1_A37_0
ER  - 
%0 Journal Article
%A Bulanyi, Bohdan
%A Lemenant, Antoine
%T Regularity for the planar optimal p-compliance problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021035/
%R 10.1051/cocv/2021035
%G en
%F COCV_2021__27_1_A37_0
Bulanyi, Bohdan; Lemenant, Antoine. Regularity for the planar optimal p-compliance problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 35. doi: 10.1051/cocv/2021035

[1] D. R. Adams and L. I. Hedberg, Function spaces and potential theory. Vol. 314 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1996).

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000).

[3] J.-F. Babadjian, F. Iurlano and A. Lemenant, Partial regularity for the crack set minimizing the two-dimensional Griffith energy. To appear in J. Eur. Math. Soc. (JEMS) (2020).

[4] T. Bagby, Quasi topologies and rational approximation. J. Funct. Anal. 10 (1972) 259–268.

[5] A. Bonnet, On the regularity of edges in image segmentation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 13 (1996) 485–528.

[6] M. Bonnivard, A. Lemenant and F. Santambrogio, Approximation of length minimization problems among compact connected sets. SIAM J. Math. Anal. 47 (2015) 1489–1529.

[7] D. Bucur and P. Trebeschi, Shape optimisation problems governed by nonlinear state equations. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 945–963.

[8] G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions. Progr. Nonlinear Differ. Equ. Appl. 51 (2002) 41–65.

[9] G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks. Netw. Heterog. Media 2 (2007) 761–777.

[10] G. Buttazzo and E. Stepanov, Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 631–678.

[11] A. Chambolle, J. Lamboley, A. Lemenant and E. Stepanov, Regularity for the optimal compliance problem with length penalization. SIAM J. Math. Anal. 49 (2017) 1166–1224.

[12] G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997).

[13] G. David, Singular sets of minimizers for the Mumford-Shah functional. Vol. 233 of Progress in mathematics. Birkhäuser-Verlag, Basel (2005).

[14] G. David and S. Semmes, Analysis of and on uniformly rectifiable sets. Vol. 38 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1993).

[15] E. Dibenedetto, C$$ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983) 827–850.

[16] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions. Textbooks in Mathematics. CRC Press, Boca Raton, FL, revised edition (2015).

[17] H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969).

[18] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Vol. 224 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, second edition (2001).

[19] L. I. Hedberg, Non-linear potentials and approximation in the mean by analytic functions. Math. Z. 129 (1972) 299–319.

[20] K. Kuratowski, Topologie. I et II. Éditions Jacques Gabay, Sceaux. Part I with an appendix by A. Mostowski and R. Sikorski, Reprint of the fourth (Part I) and third (Part II) editions (1992).

[21] P. Lindqvist, Notes on the stationary p-Laplace equation. Springer Briefs in Mathematics. Springer, Cham (2019).

[22] A. Nayam, Asymptotics of an optimal compliance-network problem. Netw. Heterog. Media 8 (2013) 573–589.

[23] A. Nayam, Constant in two-dimensional p-compliance-network problem. Netw. Heterog. Media 9 (2014) 161–168.

[24] E. Paolini and E. Stepanov, Existence and regularity results for the Steiner problem. Calc. Var. Partial Differ. Equ. 46 (2013) 837–860.

[25] D. Slepčev, Counterexample to regularity in average-distance problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) 169–184.

[26] V. Šverák On optimal shape design. J. Math. Pures Appl. 72 (1993) 537–551.

[27] W. P. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Vol. 120 of Graduate Texts in Mathematics. Springer-Verlag, New York (1989).

Cité par Sources :