In this paper we prove a partial C$$ regularity result in dimension N = 2 for the optimal p-compliance problem, extending for p≠2 some of the results obtained by Chambolle et al. (2017). Because of the lack of good monotonicity estimates for the p-energy when p≠2, we employ an alternative technique based on a compactness argument leading to a p-energy decay at any flat point. We finally obtain that every optimal set has no loop, is Ahlfors regular, and is C$$ at ℌ1-a.e. point for every p ∈ (1, +∞).
Accepté le :
Première publication :
Publié le :
Keywords: Compliance, regularity theory, shape optimization, minimizers
@article{COCV_2021__27_1_A37_0,
author = {Bulanyi, Bohdan and Lemenant, Antoine},
title = {Regularity for the planar optimal \protect\emph{p}-compliance problem},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021035},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021035/}
}
TY - JOUR AU - Bulanyi, Bohdan AU - Lemenant, Antoine TI - Regularity for the planar optimal p-compliance problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021035/ DO - 10.1051/cocv/2021035 LA - en ID - COCV_2021__27_1_A37_0 ER -
%0 Journal Article %A Bulanyi, Bohdan %A Lemenant, Antoine %T Regularity for the planar optimal p-compliance problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021035/ %R 10.1051/cocv/2021035 %G en %F COCV_2021__27_1_A37_0
Bulanyi, Bohdan; Lemenant, Antoine. Regularity for the planar optimal p-compliance problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 35. doi: 10.1051/cocv/2021035
[1] and , Function spaces and potential theory. Vol. 314 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1996).
[2] , and , Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000).
[3] , and , Partial regularity for the crack set minimizing the two-dimensional Griffith energy. To appear in J. Eur. Math. Soc. (JEMS) (2020).
[4] , Quasi topologies and rational approximation. J. Funct. Anal. 10 (1972) 259–268.
[5] , On the regularity of edges in image segmentation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 13 (1996) 485–528.
[6] , and , Approximation of length minimization problems among compact connected sets. SIAM J. Math. Anal. 47 (2015) 1489–1529.
[7] and , Shape optimisation problems governed by nonlinear state equations. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 945–963.
[8] , and , Optimal transportation problems with free Dirichlet regions. Progr. Nonlinear Differ. Equ. Appl. 51 (2002) 41–65.
[9] and , Asymptotical compliance optimization for connected networks. Netw. Heterog. Media 2 (2007) 761–777.
[10] and , Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 631–678.
[11] , , and , Regularity for the optimal compliance problem with length penalization. SIAM J. Math. Anal. 49 (2017) 1166–1224.
[12] and , Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997).
[13] , Singular sets of minimizers for the Mumford-Shah functional. Vol. 233 of Progress in mathematics. Birkhäuser-Verlag, Basel (2005).
[14] and , Analysis of and on uniformly rectifiable sets. Vol. 38 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1993).
[15] , C$$ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983) 827–850.
[16] and , Measure theory and fine properties of functions. Textbooks in Mathematics. CRC Press, Boca Raton, FL, revised edition (2015).
[17] , Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969).
[18] and , Elliptic partial differential equations of second order. Vol. 224 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, second edition (2001).
[19] , Non-linear potentials and approximation in the mean by analytic functions. Math. Z. 129 (1972) 299–319.
[20] , Topologie. I et II. Éditions Jacques Gabay, Sceaux. Part I with an appendix by and , Reprint of the fourth (Part I) and third (Part II) editions (1992).
[21] , Notes on the stationary p-Laplace equation. Springer Briefs in Mathematics. Springer, Cham (2019).
[22] , Asymptotics of an optimal compliance-network problem. Netw. Heterog. Media 8 (2013) 573–589.
[23] , Constant in two-dimensional p-compliance-network problem. Netw. Heterog. Media 9 (2014) 161–168.
[24] and , Existence and regularity results for the Steiner problem. Calc. Var. Partial Differ. Equ. 46 (2013) 837–860.
[25] , Counterexample to regularity in average-distance problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) 169–184.
[26] On optimal shape design. J. Math. Pures Appl. 72 (1993) 537–551.
[27] , Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Vol. 120 of Graduate Texts in Mathematics. Springer-Verlag, New York (1989).
Cité par Sources :





