In this paper we study homogenization of a class of control problems in a stationary and ergodic random environment. This problem has been mostly studied in the calculus of variations setting in connection to the homogenization of the Hamilton–Jacobi equation. We extend the result to control problems with more general state dynamics and macroscopically inhomogeneous Lagrangians. Moreover, our approach proves homogenization under weaker growth assumptions on the Lagrangian, even in the well-studied calculus of variations setting.
Accepté le :
Première publication :
Publié le :
Keywords: Optimal control theory, homogenisation, Hamilton Jacobi equations
@article{COCV_2021__27_1_A70_0,
author = {Van-Brunt, Alexander},
title = {Stochastic homogenization of deterministic control problems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021023},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021023/}
}
TY - JOUR AU - Van-Brunt, Alexander TI - Stochastic homogenization of deterministic control problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021023/ DO - 10.1051/cocv/2021023 LA - en ID - COCV_2021__27_1_A70_0 ER -
%0 Journal Article %A Van-Brunt, Alexander %T Stochastic homogenization of deterministic control problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021023/ %R 10.1051/cocv/2021023 %G en %F COCV_2021__27_1_A70_0
Van-Brunt, Alexander. Stochastic homogenization of deterministic control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 68. doi: 10.1051/cocv/2021023
[1] , and , Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations. J. Amer. Math. Soc. 27 (2014) 479–540.
[2] and , One-dimensional Variational Problems whose Minimizers do not Satisfy the Euler-Lagrange Equation. Arch. Ratl. Mech. Anal. 90 (1985) 325–388.
[3] and , Metric techniques for convex stationary ergodic Hamiltonians. Calc. Variat. Partial Differ. Equ. 40 (2011) 391–421.
[4] and , Weak KAM theory topics in the stationary ergodic setting. Calc. Variat. Partial Differ. Equ. 44 (2012) 319–350.
[5] , , and , Stochastic homogenization for functionals with anisotropic rescaling and noncoercive Hamilton–Jacobi equations. SIAM J. Math. Anal. 50 (2018) 5198–5242.
[6] , The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Royal Soc. Edinburgh: Sect. A Math. 111 (1989) 359–375.
[7] and , Homogenization and non-homogenization of certain non-convex Hamilton-Jacobi equations. J. Math. Pures Appl. 108 (2017) 751–782.
[8] , On certain questions in the theory of optimal control. J. Soc. Ind. Appl. Math. Ser. A Control 1 (1962) 76–84.
[9] and , Controlled Markov Processes and Viscosity Solutions Stochastic Modelling and Applied Probability, Springer New York (2006).
[10] , Almost periodic homogenization of Hamilton-Jacobi equations. Int. Conf. Differ. Equ. 1 (2000).
[11] , and , Stochastic homogenization of viscous superquadratic Hamilton–Jacobi equations in dynamic random environment. Res. Math. Sci. 4 (2017) 6.
[12] , and , Stochastic homogenization of Hamilton-Jacobi-Bellman equations. Commun. Pure Appl. Math. 59 (2006) 1489–1521.
[13] and , Ergodic Theorems. De Gruyter Studies in Mathematics, De Gruyter (1985).
[14] , and , Homogenization of Hamilton-Jacobi equations. unpublished (1986).
[15] and , Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Commun. Pure Appl. Math. 56 (2003) 1501–1524.
[16] and , Homogenization of “viscous” Hamilton–Jacobi equations in stationary ergodic media. Commun. Partial Differ. Equ. 30 (2005) 335–375.
[17] and , Homogenization for stochastic Hamilton-Jacobi equations. Arch. Ratl. Mech. Anal. 151 (2000) 277–309.
[18] , The existence of optimal controls. Michigan Math. J. 9 (1962) 109–119.
[19] , Real Analysis. Mathematics and statistics, Macmillan (1988).
[20] , Stochastic homogenization of Hamilton–Jacobi equations and some applications. Asymptotic Anal. 20 (1999) 1–11.
[21] , Existence of optimal controls. Pacific J. Math. 20 (1967) 167–177.
[22] , Stochastic Homogenization of Nonconvex Hamilton-Jacobi Equations: A Counterexample. Commun. Pure Appl. Math. (2015) . | arXiv
Cité par Sources :





