Stochastic homogenization of deterministic control problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 68

In this paper we study homogenization of a class of control problems in a stationary and ergodic random environment. This problem has been mostly studied in the calculus of variations setting in connection to the homogenization of the Hamilton–Jacobi equation. We extend the result to control problems with more general state dynamics and macroscopically inhomogeneous Lagrangians. Moreover, our approach proves homogenization under weaker growth assumptions on the Lagrangian, even in the well-studied calculus of variations setting.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021023
Classification : 49J20, 35B27, 49L25
Keywords: Optimal control theory, homogenisation, Hamilton Jacobi equations
@article{COCV_2021__27_1_A70_0,
     author = {Van-Brunt, Alexander},
     title = {Stochastic homogenization of deterministic control problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021023},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021023/}
}
TY  - JOUR
AU  - Van-Brunt, Alexander
TI  - Stochastic homogenization of deterministic control problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021023/
DO  - 10.1051/cocv/2021023
LA  - en
ID  - COCV_2021__27_1_A70_0
ER  - 
%0 Journal Article
%A Van-Brunt, Alexander
%T Stochastic homogenization of deterministic control problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021023/
%R 10.1051/cocv/2021023
%G en
%F COCV_2021__27_1_A70_0
Van-Brunt, Alexander. Stochastic homogenization of deterministic control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 68. doi: 10.1051/cocv/2021023

[1] S. Armstrong, P. Cardaliaguet and P. Souganidis, Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations. J. Amer. Math. Soc. 27 (2014) 479–540.

[2] J. Ball and V. J. Mizel, One-dimensional Variational Problems whose Minimizers do not Satisfy the Euler-Lagrange Equation. Arch. Ratl. Mech. Anal. 90 (1985) 325–388.

[3] A. Davini and A. Siconolfi, Metric techniques for convex stationary ergodic Hamiltonians. Calc. Variat. Partial Differ. Equ. 40 (2011) 391–421.

[4] A. Davini and A. Siconolfi, Weak KAM theory topics in the stationary ergodic setting. Calc. Variat. Partial Differ. Equ. 44 (2012) 319–350.

[5] N. Dirr, F. Dragoni, P. Mannucci and C. Marchi, Stochastic homogenization for functionals with anisotropic rescaling and noncoercive Hamilton–Jacobi equations. SIAM J. Math. Anal. 50 (2018) 5198–5242.

[6] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Royal Soc. Edinburgh: Sect. A Math. 111 (1989) 359–375.

[7] W. M. Feldman and P. E. Souganidis, Homogenization and non-homogenization of certain non-convex Hamilton-Jacobi equations. J. Math. Pures Appl. 108 (2017) 751–782.

[8] A. Filippov, On certain questions in the theory of optimal control. J. Soc. Ind. Appl. Math. Ser. A Control 1 (1962) 76–84.

[9] W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions Stochastic Modelling and Applied Probability, Springer New York (2006).

[10] H. Ishii, Almost periodic homogenization of Hamilton-Jacobi equations. Int. Conf. Differ. Equ. 1 (2000).

[11] W. Jing, P. E. Souganidis and H. V. Tran, Stochastic homogenization of viscous superquadratic Hamilton–Jacobi equations in dynamic random environment. Res. Math. Sci. 4 (2017) 6.

[12] E. Kosygina, F. Rezakhanlou and S. R. S. Varadhan, Stochastic homogenization of Hamilton-Jacobi-Bellman equations. Commun. Pure Appl. Math. 59 (2006) 1489–1521.

[13] U. Krengel and A. Brunel, Ergodic Theorems. De Gruyter Studies in Mathematics, De Gruyter (1985).

[14] P.-L. Lions, G. Papanicolaou and S. R. Varadhan, Homogenization of Hamilton-Jacobi equations. unpublished (1986).

[15] P.-L. Lions and P. Souganidis, Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Commun. Pure Appl. Math. 56 (2003) 1501–1524.

[16] P.-L. Lions and P. E. Souganidis, Homogenization of “viscous” Hamilton–Jacobi equations in stationary ergodic media. Commun. Partial Differ. Equ. 30 (2005) 335–375.

[17] F. Rezakhanlou and J. E. Tarver, Homogenization for stochastic Hamilton-Jacobi equations. Arch. Ratl. Mech. Anal. 151 (2000) 277–309.

[18] E. Roxin, The existence of optimal controls. Michigan Math. J. 9 (1962) 109–119.

[19] H. Royden, Real Analysis. Mathematics and statistics, Macmillan (1988).

[20] P. E. Souganidis, Stochastic homogenization of Hamilton–Jacobi equations and some applications. Asymptotic Anal. 20 (1999) 1–11.

[21] A. Stoddart, Existence of optimal controls. Pacific J. Math. 20 (1967) 167–177.

[22] B. Ziliotto, Stochastic Homogenization of Nonconvex Hamilton-Jacobi Equations: A Counterexample. Commun. Pure Appl. Math. (2015) . | arXiv

Cité par Sources :