On the convexity condition for the Semi-Geostrophic system
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 25

We show that conservative distributional solutions to the Semi-Geostrophic systems in a rigid domain are in some well-defined sense critical points of a time-shifted energy functional involving measure-preserving rearrangements of the absolute density and momentum, which arise as one-parameter flow maps of continuously differentiable, compactly supported divergence free vector fields. We also show directly, with no recourse to Monge-Kantorovich theory, that the convexity requirement on the modified pressure potentials arises naturally if these critical points are local minimizers of said energy functional for any admissible vector field. The obligatory connection with the Monge-Kantorovich theory is addressed briefly.

DOI : 10.1051/cocv/2021018
Classification : 35A15, 35E10, 35F20, 35Q35
Keywords: Semi-Geostrophic System, Cullen-Purser stability, modified pressure, convexity of the potential
@article{COCV_2021__27_1_A27_0,
     author = {Tudorascu, Adrian},
     title = {On the convexity condition for the {Semi-Geostrophic} system},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021018},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021018/}
}
TY  - JOUR
AU  - Tudorascu, Adrian
TI  - On the convexity condition for the Semi-Geostrophic system
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021018/
DO  - 10.1051/cocv/2021018
LA  - en
ID  - COCV_2021__27_1_A27_0
ER  - 
%0 Journal Article
%A Tudorascu, Adrian
%T On the convexity condition for the Semi-Geostrophic system
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021018/
%R 10.1051/cocv/2021018
%G en
%F COCV_2021__27_1_A27_0
Tudorascu, Adrian. On the convexity condition for the Semi-Geostrophic system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 25. doi: 10.1051/cocv/2021018

[1] L. Ambrosio, M. Colombo, G. De Philippis and A. Figalli, Existence of Eulerian solutions to the semigeostrophic equations in physical space: the 2-dimensional periodic case. Commun. Part. Differ. Equ. 37 (2012) 2209–2227.

[2] L. Ambrosio, M. Colombo, G. De Philippis and A. Figalli, A global existence result for the semigeostrophic equations in three dimensional convex domains. Discrete Contin. Dyn. Syst. 34 (2014) 1251–1268.

[3] J.-D. Benamou and Y. Brenier, Weak existence for the Semi-Geostrophic equations formulated as a coupled Monge-Ampere/transport problem. SIAM J. Appl. Math. 58 (1998) 1450–1461.

[4] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991) 375–417.

[5] Y. Brenier and M. Cullen, Rigorous derivation of the XZ Semigeostrophic equations. Commun. Math. Sci. 7 (2009) 779–784.

[6] P. Cardaliaguet, Notes on Mean-Field Games, lectures by P.-L. Lions, Collège de France (2010).

[7] J. Cheng, M. Cullen and M. Feldman, Semi-Geostrophic system with variable Coriolis parameter. Arch. Ration. Mech. Anal. 227 (2018) 215–272.

[8] G. Crippa, The flow associated to weakly differentiable vector fields. Ph.D. thesis, Scuola Normale Superiore di Pisa (2008).

[9] M. J. P. Cullen, A mathematical theory of large-scale atmosphere/ocean flow. Imperial College Press (2006).

[10] M. J. P. Cullen, T. Kuna, B. Pelloni and M. Wilkinson, The Stability Principle and global weak solutions of the free surface semi-geostrophic equations in geostrophic coordinates. Proc R Soc A 475 (2019) 20180787.

[11] M. J. P. Cullen and M. Feldman, Lagrangian solutions of Semi-Geostrophic equations in physical space. SIAM J. Math. Anal. 37 (2006) 1371–1395.

[12] M. J. P. Cullen and W. Gangbo, A variational approach for the 2-dimensional semi-geostrophic shallow water equations. Arch. Rat. Mech. Anal. 156 (2001) 241–273.

[13] G. De Philippis and A. Figalli, W2,1 regularity for solutions of the Monge-Ampère equation. Invent. Math. 192 (2013) 55–69.

[14] J. C. O Faria, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Weak stability of Lagrangian solutions to the Semi-Geostrophic equations. Nonlinearity 22 (2009) 2521–2539.

[15] M. Feldman and A. Tudorascu, On Lagrangian solutions for the Semi-Geostrophic system with singular initial data. SIAM J. Math. Anal. 45 (2013) 1616–1640.

[16] M. Feldman and A. Tudorascu, On the Semi-Geostrophic system in physical space with general initial data. Arch. Rat. Mech. Anal. 218 (2015) 527–551.

[17] M. Feldman and A. Tudorascu, The Semi-Geostrophic system: weak-strong uniqueness under uniform convexity. Calc. Var. Partial Differ. Equ. 56 (2017) 158.

[18] B. Hoskins, The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci. 32 (1975) 233–242.

[19] T. Kato, Perturbation Theory for Linear Differential Operators. Springer (1995).

[20] G. Loeper, A fully nonlinear version of the incompressible Euler equations: the Semigeostrophic system. SIAM J. Math. Anal. 38 (2006) 795–823.

Cité par Sources :