Global gradient estimates for nonlinear parabolic operators
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 21

We consider a parabolic equation driven by a nonlinear diffusive operator and we obtain a gradient estimate in the domain where the equation takes place. This estimate depends on the structural constants of the equation, on the geometry of the ambient space and on the initial and boundary data. As a byproduct, one easily obtains a universal interior estimate, not depending on the parabolic data. The setting taken into account includes sourcing terms and general diffusion coefficients. The results are new, to the best of our knowledge, even in the Euclidean setting, though we treat here also the case of a complete Riemannian manifold.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021016
Classification : 35B09, 35B50, 35K05, 35R01
Keywords: Parabolic equations on Riemannian manifolds, maximum principle, global gradient estimates
@article{COCV_2021__27_1_A23_0,
     author = {Dipierro, Serena and Gao, Zu and Valdinoci, Enrico},
     title = {Global gradient estimates for nonlinear parabolic operators},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021016},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021016/}
}
TY  - JOUR
AU  - Dipierro, Serena
AU  - Gao, Zu
AU  - Valdinoci, Enrico
TI  - Global gradient estimates for nonlinear parabolic operators
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021016/
DO  - 10.1051/cocv/2021016
LA  - en
ID  - COCV_2021__27_1_A23_0
ER  - 
%0 Journal Article
%A Dipierro, Serena
%A Gao, Zu
%A Valdinoci, Enrico
%T Global gradient estimates for nonlinear parabolic operators
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021016/
%R 10.1051/cocv/2021016
%G en
%F COCV_2021__27_1_A23_0
Dipierro, Serena; Gao, Zu; Valdinoci, Enrico. Global gradient estimates for nonlinear parabolic operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 21. doi: 10.1051/cocv/2021016

[1] D. G. Aronson and P. Benilan, Regularite des solutions de l’equation des milieuxporeuxdans R$$. C. R. Acad. Sci. Paris Ser. A-B 288 (1979) A103–A105.

[2] Giles Auchmuty and David Bao, Harnack-type inequalities for evolution equations. Proc. Am. Math. Soc. 122 (1994) 117–129.

[3] J. Baptiste Joseph Fourier, Theorie analytique de la chaleur, Cambridge Library Collection, Cambridge University Press, Cambridge (2009).

[4] S. Benachour and P. Laurencot, Global solutions to viscous Hamilton-Jacobi equations with irregular initial data. Commun. Partial Differ. Equ. 24 (1999) 1999–2021.

[5] D. Bianchi and A. G. Setti, Laplacian cut-offs, porous and fast diffusion on manifolds and other applications. Calc. Var. Partial Differ. Equ. 57 (2018) 33.

[6] M. Bonforte, G. Grillo and J. L. Vazquez, Fast diffusion flow on manifolds of nonpositive curvature. J. Evol. Equ. 8 (2008) 99–128.

[7] D. Castorina and C. Mantegazza, Ancient solutions of semilinear heat equations on Riemannianmanifolds. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017) 85–101.

[8] D. Castorina and C. Mantegazza, Ancient solutions of superlinear heat equations on Riemannian manifolds. Commun. Contemp. Math. 23 (2021) 2050033.

[9] C. Cavaterra, S. Dipierro, A. Farina, Z. Gao and E. Valdinoci, Pointwise gradient bounds for entire solutions of elliptic equations with non-standard growth conditions and general nonlinearities. J. Differ. Equ. 270 (2021) 435–475.

[10] C. Cavaterra, S. Dipierro, Z. Gao and E. Valdinoci, Global gradient estimates for a general type of nonlinear parabolic equations. Preprint arXiv (2020). | arXiv

[11] R. Dal Passo and S. Luckhaus, A degenerate diffusion problem not in divergence form. J. Differ. Equ. 69 (1987) 1–14.

[12] A. Friedman, Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, NJ (1964).

[13] G. Grillo and M. Muratori, Smoothing effects for the porous medium equation on Cartan-Hadamard manifolds. Nonlinear Anal. 131 (2016) 346–362.

[14] G. Grillo, M. Muratori and J. L. Vazquez, The porous medium equation on Riemannianmanifolds with negative curvature. The large-time behavior. Adv. Math. 314 (2017) 328–377.

[15] R. S. Hamilton, A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1 (1993) 113–126.

[16] M. A. Herrero and M. Pierre, The Cauchy problem for u$$ = Δu$$ when 0 <m < 1. Trans. Am. Math. Soc. 291 (1985) 145–158.

[17] E. P. Hsu, Estimates of derivatives of the heat kernel on a compact Riemannian manifold. Proc. Am. Math. Soc. 127 (1999) 3739–3744.

[18] P. Li and S.-T. Yau, On the parabolic kernel of the Schrodinger operator. Acta Math. 156 (1986) 153–201.

[19] P. Lu, L. Ni, J.-L. Vazquez and C. Villani, Local Aronson-Benilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. J. Math. Pures Appl. 91 (2009) 1–19.

[20] L. Ma, Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds. J. Funct. Anal. 241 (2006) 374–382.

[21] L. Ma and Y. An, The maximum principle and the Yamabeflow, Partial differential equations and their applications (Wuhan, 1999). World Sci. Publ., River Edge, NJ (1999) 211–224.

[22] L. Ma, L. Zhao and X. Song, Gradient estimate for the degenerate parabolic equation u$$ = ΔF(u) + H(u) on manifolds. J. Differ. Equ. 244 (2008) 1157–1177.

[23] P. Malliavin and D. W. Stroock, Short time behavior of the heat kernel and its logarithmic derivatives. J. Differ. Geom. 44 (1996) 550–570.

[24] P. Souplet and Q. S. Zhang, Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. London Math. Soc. 38 (2006) 1045–1053.

[25] D. W. Stroock and J. Turetsky, Upper bounds on derivatives of the logarithm of the heat kernel. Commun. Anal. Geom. 6 (1998) 669–685.

[26] M. Ughi, A degenerate parabolic equation modelling the spread of an epidemic. Ann. Mat. Pura Appl. 143 (1986) 385–400.

[27] J. Vazquez, The porous medium equation, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007).

[28] W. Wang, Harnack differential inequalities for the parabolic equation $$ = ℒ F(u) on Riemannian manifolds and applications. Acta Math. Sin. (Engl. Ser.) 33 (2017) 620–634.

[29] X. Xu, Gradient estimates for u$$ = ΔF(u) on manifolds and some Liouville-type theorems. J. Differ. Equ. 252 (2012) 1403–1420.

[30] Y. Yang, Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Proc. Am. Math. Soc. 136 (2008) 4095–4102.

[31] X. Zhu, Hamilton’s gradient estimates and Liouville theorems for fast diffusion equations on noncompact Riemannian manifolds. Proc. Am. Math. Soc. 139 (2011) 1637–1644.

[32] X. Zhu, Hamilton’s gradient estimates and Liouville theorems for porous medium equations on noncompact Riemannian manifolds. J. Math. Anal. Appl. 402 (2013) 201–206.

Cité par Sources :