Kato smoothing properties of a class of nonlinear dispersive wave equations on a periodic domain
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 12

The solutions of the Cauchy problem of the KdV equation on a periodic domain 𝕋,

$$

possess neither the sharp Kato smoothing property,

$$

nor the Kato smoothing property,

$$

Considered in this article is the Cauchy problem of the following dispersive equations posed on the periodic domain 𝕋, (See Eq. (1) below)

$$

where gC$$(𝕋) is a real value function with the support

$$

It is shown that

(1) if ω ≠ ∅, then the solutions of the Cauchy problem (1) possess the Kato smoothing property;

(2) if g is a nonzero constant function, then the solutions of the Cauchy problem (1) possess the sharp Kato smoothing property.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021012
Classification : 35B65, 35Q53, 35K45
Keywords: Kato smoothing property, sharp Kato smoothing property, KdV equation, KdV-Burgers equation
@article{COCV_2021__27_1_A14_0,
     author = {Sun, Shu-Ming and Yang, Xin and Zhang, Bing-Yu and Zhong, Ning},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Kato smoothing properties of a class of nonlinear dispersive wave equations on a periodic domain},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021012},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021012/}
}
TY  - JOUR
AU  - Sun, Shu-Ming
AU  - Yang, Xin
AU  - Zhang, Bing-Yu
AU  - Zhong, Ning
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Kato smoothing properties of a class of nonlinear dispersive wave equations on a periodic domain
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021012/
DO  - 10.1051/cocv/2021012
LA  - en
ID  - COCV_2021__27_1_A14_0
ER  - 
%0 Journal Article
%A Sun, Shu-Ming
%A Yang, Xin
%A Zhang, Bing-Yu
%A Zhong, Ning
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Kato smoothing properties of a class of nonlinear dispersive wave equations on a periodic domain
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021012/
%R 10.1051/cocv/2021012
%G en
%F COCV_2021__27_1_A14_0
Sun, Shu-Ming; Yang, Xin; Zhang, Bing-Yu; Zhong, Ning. Kato smoothing properties of a class of nonlinear dispersive wave equations on a periodic domain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 12. doi: 10.1051/cocv/2021012

[1] J. L. Bona, S.-M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane. Trans. Am. Math. Soc. 354 (2002) 427–490.

[2] J. L. Bona, S. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries Equation on a finite domain. Commun. Partial Differ. Equ. 28 (2003) 1391–1436.

[3] J. L. Bona, S. M. Sun and B.-Y. Zhang, Boundary smoothing properties of the Korteweg-de Vries equation in a quarter plane and applications. Dyn. Partial Differ. Equ. 3 (2006) 1–69.

[4] J. L. Bona, S. M. Sun and B.-Y. Zhang, Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25 (2008) 1145–1185.

[5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Shrödinger equations. Geom. Funct. Anal. 3 (1993) 107–156.

[6] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II: the KdV-equation. Geom. Funct. Anal. 3 (1993) 209–262.

[7] E. Cerpa, I. Rivas and B.-Y. Zhang, Boundary controllability of the Korteweg-de Vries equation on a bounded domain. SIAM J. Control Optim. 51 (2013) 2976–3010.

[8] M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Am. J. Math. 125 (2003) 1235–1293.

[9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness results for periodic and non-periodic KdV and modified KdV on R and 𝕋. J. Am. Math. Soc. 16 (2003) 705–749.

[10] J. Colliander and C. Kenig, The generalized Korteweg-de Vries equation on the half line. Commun. Partial Differ. Equ. 27 (2002) 2187–2266.

[11] P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations. J. Am. Math. Soc. 1 (1988) 413–446.

[12] C. Flores and D. Smith, Control and stabilization of the periodic fifth order Korteweg-de Vries equation. ESAIM: COCV 25 (2019) 1–38.

[13] J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation. Commun. Partial Differ. Equ. 31 (2006) 1151–1190.

[14] J. Holmer, The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line. Differ. Integr. Equ. 18 (2005) 647–668.

[15] C. Jia and B.-Y. Zhang, Boundary stabilization of the Korteweg-de Vries equation and the Kortweg-de Vries-Burgers equation. Acta Appl. Math. 118 (2012) 25–47.

[16] T. Kato, On the Korteweg-de Vries equation. Manuscr. Math. 28 (1979) 89–99.

[17] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equations. Adv. Math. Suppl. Stud. 8 (1983) 93–128.

[18] C. Kenig, G. Ponce and L. Vega, On the (generalized) Korteweg-de Vries equation. Duke Math. J. 59 (1989) 585–610.

[19] C. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40 (1991) 33–69.

[20] C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4 (1991) 323–347.

[21] C. Kenig, G. Ponce and L. Vega, Well-Posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46 (1993) 527–620.

[22] C. Kenig, G. Ponce and L. Vega, A Bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9 (1996) 573–603.

[23] F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain. Trans. Am. Math. Soc. 367 (2015) 4595–4626.

[24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. In Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York-Berlin-Heidelberg-Tokyo (1983).

[25] L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation: recent progresses. J. Syst. Sci. Complex. 22 (2009) 647–682.

[26] D. L. Russell and B.-Y. Zhang, Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation. J. Math. Anal. Appl. 190 (1995) 449–488.

[27] P. Sjölin, Regularity of solutions to the Schrödinger equation. Duke Math. J. 55 (1987) 699–715.

[28] S.-M. Sun, E. Trélat, B.-Y. Zhang and N. Zhong, On sharpness of the local Kato-smoothing property for dispersive wave equations. Proc. Am. Math. Soc. 145 (2017) 653–664.

[29] L. Tartar, Interpolation non linèaire et régularité. J. Funct. Anal. 9 (1972) 469–489.

Cité par Sources :

The paper is dedicated to Enrique Zuazua for his 60th birthday.