The solutions of the Cauchy problem of the KdV equation on a periodic domain 𝕋,
| $$ |
possess neither the sharp Kato smoothing property,
| $$ |
nor the Kato smoothing property,
| $$ |
Considered in this article is the Cauchy problem of the following dispersive equations posed on the periodic domain 𝕋, (See Eq. (1) below)
| $$ |
where g ∈ C$$(𝕋) is a real value function with the support
| $$ |
It is shown that
(1) if ω ≠ ∅, then the solutions of the Cauchy problem (1) possess the Kato smoothing property;
(2) if g is a nonzero constant function, then the solutions of the Cauchy problem (1) possess the sharp Kato smoothing property.
Accepté le :
Première publication :
Publié le :
Keywords: Kato smoothing property, sharp Kato smoothing property, KdV equation, KdV-Burgers equation
@article{COCV_2021__27_1_A14_0,
author = {Sun, Shu-Ming and Yang, Xin and Zhang, Bing-Yu and Zhong, Ning},
editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
title = {Kato smoothing properties of a class of nonlinear dispersive wave equations on a periodic domain},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021012},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021012/}
}
TY - JOUR AU - Sun, Shu-Ming AU - Yang, Xin AU - Zhang, Bing-Yu AU - Zhong, Ning ED - Buttazzo, G. ED - Casas, E. ED - de Teresa, L. ED - Glowinski, R. ED - Leugering, G. ED - Trélat, E. ED - Zhang, X. TI - Kato smoothing properties of a class of nonlinear dispersive wave equations on a periodic domain JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021012/ DO - 10.1051/cocv/2021012 LA - en ID - COCV_2021__27_1_A14_0 ER -
%0 Journal Article %A Sun, Shu-Ming %A Yang, Xin %A Zhang, Bing-Yu %A Zhong, Ning %E Buttazzo, G. %E Casas, E. %E de Teresa, L. %E Glowinski, R. %E Leugering, G. %E Trélat, E. %E Zhang, X. %T Kato smoothing properties of a class of nonlinear dispersive wave equations on a periodic domain %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021012/ %R 10.1051/cocv/2021012 %G en %F COCV_2021__27_1_A14_0
Sun, Shu-Ming; Yang, Xin; Zhang, Bing-Yu; Zhong, Ning. Kato smoothing properties of a class of nonlinear dispersive wave equations on a periodic domain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 12. doi: 10.1051/cocv/2021012
[1] , and , A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane. Trans. Am. Math. Soc. 354 (2002) 427–490.
[2] , and , A nonhomogeneous boundary-value problem for the Korteweg-de Vries Equation on a finite domain. Commun. Partial Differ. Equ. 28 (2003) 1391–1436.
[3] , and , Boundary smoothing properties of the Korteweg-de Vries equation in a quarter plane and applications. Dyn. Partial Differ. Equ. 3 (2006) 1–69.
[4] , and , Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25 (2008) 1145–1185.
[5] , Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Shrödinger equations. Geom. Funct. Anal. 3 (1993) 107–156.
[6] , Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II: the KdV-equation. Geom. Funct. Anal. 3 (1993) 209–262.
[7] , and , Boundary controllability of the Korteweg-de Vries equation on a bounded domain. SIAM J. Control Optim. 51 (2013) 2976–3010.
[8] , and , Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Am. J. Math. 125 (2003) 1235–1293.
[9] , , , and , Sharp global well-posedness results for periodic and non-periodic KdV and modified KdV on R and 𝕋. J. Am. Math. Soc. 16 (2003) 705–749.
[10] and , The generalized Korteweg-de Vries equation on the half line. Commun. Partial Differ. Equ. 27 (2002) 2187–2266.
[11] and , Local smoothing properties of dispersive equations. J. Am. Math. Soc. 1 (1988) 413–446.
[12] and , Control and stabilization of the periodic fifth order Korteweg-de Vries equation. ESAIM: COCV 25 (2019) 1–38.
[13] , The initial-boundary value problem for the Korteweg-de Vries equation. Commun. Partial Differ. Equ. 31 (2006) 1151–1190.
[14] , The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line. Differ. Integr. Equ. 18 (2005) 647–668.
[15] and , Boundary stabilization of the Korteweg-de Vries equation and the Kortweg-de Vries-Burgers equation. Acta Appl. Math. 118 (2012) 25–47.
[16] , On the Korteweg-de Vries equation. Manuscr. Math. 28 (1979) 89–99.
[17] , On the Cauchy problem for the (generalized) Korteweg-de Vries equations. Adv. Math. Suppl. Stud. 8 (1983) 93–128.
[18] , and , On the (generalized) Korteweg-de Vries equation. Duke Math. J. 59 (1989) 585–610.
[19] , and , Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40 (1991) 33–69.
[20] , and , Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4 (1991) 323–347.
[21] , and , Well-Posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46 (1993) 527–620.
[22] , and , A Bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9 (1996) 573–603.
[23] and , Control and stabilization of the Benjamin-Ono equation on a periodic domain. Trans. Am. Math. Soc. 367 (2015) 4595–4626.
[24] , Semigroups of Linear Operators and Applications to Partial Differential Equations. In Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York-Berlin-Heidelberg-Tokyo (1983).
[25] and , Control and stabilization of the Korteweg-de Vries equation: recent progresses. J. Syst. Sci. Complex. 22 (2009) 647–682.
[26] and , Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation. J. Math. Anal. Appl. 190 (1995) 449–488.
[27] , Regularity of solutions to the Schrödinger equation. Duke Math. J. 55 (1987) 699–715.
[28] , , and , On sharpness of the local Kato-smoothing property for dispersive wave equations. Proc. Am. Math. Soc. 145 (2017) 653–664.
[29] , Interpolation non linèaire et régularité. J. Funct. Anal. 9 (1972) 469–489.
Cité par Sources :
The paper is dedicated to Enrique Zuazua for his 60th birthday.





