Localization of energy and localized controllability
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 29

We will consider both the controlled Schrödinger equation and the controlled wave equation on a bounded open set Ω of ℝ$$ during an interval of time (0, T), with T > 0. The control is distributed and acts on a nonempty open subdomain ω of Ω. On the other hand, we consider another open subdomain D of Ω and the localized energy of the solution in D. The first question we want to study is the possibility of obtaining a prescribed value of this local energy at time T by choosing the control adequately. It turns out that this question is equivalent to a problem of exact or approximate controllability in D, which we call localized controllability and which is the second question studied in this article. We obtain sharp results on these two questions and, of course, the answers will require conditions on ω and T which will be given precisely later on.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021005
Keywords: Wave equation, Schrödinger equation, localized energy, localized controllability
@article{COCV_2021__27_1_A31_0,
     author = {Chaves-Silva, F. W. and Puel, J.-P. and Santos, M. C.},
     title = {Localization of energy and localized controllability},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021005},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021005/}
}
TY  - JOUR
AU  - Chaves-Silva, F. W.
AU  - Puel, J.-P.
AU  - Santos, M. C.
TI  - Localization of energy and localized controllability
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021005/
DO  - 10.1051/cocv/2021005
LA  - en
ID  - COCV_2021__27_1_A31_0
ER  - 
%0 Journal Article
%A Chaves-Silva, F. W.
%A Puel, J.-P.
%A Santos, M. C.
%T Localization of energy and localized controllability
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021005/
%R 10.1051/cocv/2021005
%G en
%F COCV_2021__27_1_A31_0
Chaves-Silva, F. W.; Puel, J.-P.; Santos, M. C. Localization of energy and localized controllability. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 29. doi: 10.1051/cocv/2021005

[1] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilisation of waves from the boundary. SIAM J. Control Optim. 305 (1992) 1024–65.

[2] N. Burq, Contrôle de l’équation des ondes dans des ouverts peu réguliers. Asymptotic Anal. 14 (1997) 157–191.

[3] N. Burq and P. Gerard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C.R. Acad. Sci. 325 (1997) 749–752.

[4] P. Gerard, Microlocal defect measures. Commun. Partial Differ. Equ. 16 (1991) 1761–1794.

[5] Y. He, Partial exact controllability for wave equations. Syst. Control Lett. 103 (2017) 45–49.

[6] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Classics Math. Reprint of the second 1990 edition. Springer-Verlag, Berlin (2003).

[7] G. Lebeau, Contrôle de l’equation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267–291.

[8] G. Lebeau, Equation des ondes amorties. Algebraic and Geometric Methods in Mathematical Physics, 73-109, Edited by A. Boutet De Monvel and V. Marchenko. Kluwer Academic, The Netherlands (1996).

[9] J. Le Rousseau, G. Lebeau, P. Terpolilli and E. Trelat, Geometric control condition for the wave equation with a time-dependent observation domain. Anal. Partial Differ. Equ. 10 (2017) 983–1015.

[10] C. Letrouit, Infinite-time observability of the wave equation with time-varying observation domains under a geodesic recurrence condition. Preprint hal-0210213 (2019).

[11] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués. Tome 1, Contrôlabilité exacte. Collection R.M.A 8, Masson (1988).

[12] E. Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Control and Optim. 32 (1994) 24–34.

[13] K. Masuda, A Unique Continuation Theorem for Solutions of the Schrödinger Equations. Proc. Jpn. Acad. 125 (1967) 853–860.

Cité par Sources :

F.W. Chaves-Silva and M.C. Santos were partially supported by CNPq-Brazil, by the Grant 2019/0014 of Paraba State Research Foundation (FAPESQ-PB) and by the program CAPES/MATH-AMSUD under the project ACIPDE number: 8881.368715/2019-01.