Singular perturbations and optimal control of stochastic systems in infinite dimension: HJB equations and viscosity solutions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 6

We study a stochastic optimal control problem for a two scale system driven by an infinite dimensional stochastic differential equation which consists of “slow” and “fast” components. We use the theory of viscosity solutions in Hilbert spaces to show that as the speed of the fast component goes to infinity, the value function of the optimal control problem converges to the viscosity solution of a reduced effective equation. We consider a rather general case where the evolution is given by an abstract semilinear stochastic differential equation with nonlinear dependence on the controls. The results of this paper generalize to the infinite dimensional case the finite dimensional results of Alvarez and Bardi [SIAM J. Control Optim. 40 (2001/02) 1159–1188] and complement the results in Hilbert spaces obtained recently in Guatteri and Tessitore [To appear in: Appl. Math. Optim. (2019) https://doi.org/10.1007/s00245-019-09577-y].

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021001
Classification : 35R15, 35B25, 35Q93, 49L25, 49L20, 60H15, 93E20
Keywords: Hamilton-Jacobi-Bellman equation, viscosity solution, stochastic optimal control, singular perturbation, two-scale system
@article{COCV_2021__27_1_A8_0,
     author = {\'Swi\k{e}ch, Andrzej},
     title = {Singular perturbations and optimal control of stochastic systems in infinite dimension: {HJB} equations and viscosity solutions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021001},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021001/}
}
TY  - JOUR
AU  - Święch, Andrzej
TI  - Singular perturbations and optimal control of stochastic systems in infinite dimension: HJB equations and viscosity solutions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021001/
DO  - 10.1051/cocv/2021001
LA  - en
ID  - COCV_2021__27_1_A8_0
ER  - 
%0 Journal Article
%A Święch, Andrzej
%T Singular perturbations and optimal control of stochastic systems in infinite dimension: HJB equations and viscosity solutions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021001/
%R 10.1051/cocv/2021001
%G en
%F COCV_2021__27_1_A8_0
Święch, Andrzej. Singular perturbations and optimal control of stochastic systems in infinite dimension: HJB equations and viscosity solutions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 6. doi: 10.1051/cocv/2021001

[1] O. Alvarez and M. Bardi, Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim. 40 (2002) 1159–1188.

[2] O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Ration. Mech. Anal. 170 (2003) 17–61.

[3] O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations. Mem. Amer. Math. Soc. 204 (2010) 1–88.

[4] M. Arisawa and P.-L. Lions, On ergodic stochastic control. Commun. Partial Differ. Equ. 23 (1998) 2187–2217.

[5] M. Bardi and A. Cesaroni, Optimal control with random parameters: a multiscale approach. Eur. J. Control 17 (2011) 30–45.

[6] M. Bardi, A. Cesaroni and L. Manca, Convergence by viscosity methods in multiscale financial models with stochastic volatility. SIAM J. Financial Math. 1 (2010) 230–65.

[7] A. Bensoussan, Perturbation methods in optimal control. Translated from the French by C. Tomson. Wiley/Gauthier-Villars Series in Modern Applied Mathematics. John Wiley & Sons, Ltd., Chichester; Gauthier-Villars, Montrouge (1988).

[8] V. S. Borkar and K. Suresh Kumar Singular perturbations in risk-sensitive stochastic control. SIAM J. Control Optim. 48 (2010) 3675–3697.

[9] V. S. Borkar and V. Gaitsgory, Singular perturbations in ergodic control of diffusions. SIAM J. Control Optim. 46 (2007) 1562–1577.

[10] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27 (1992) 1–67.

[11] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms. J. Funct. Anal. 90 (1990) 237–283.

[12] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Second edition. Encyclopedia of Mathematics and its Applications, 152. Cambridge University Press, Cambridge (2014).

[13] T. D. Donchev and A. L. Dontchev, Singular perturbations in infinite-dimensional control systems. SIAM J. Control Optim. 42 (2003) 1795–1812.

[14] G. Fabbri, F. Gozzi and A. Święch, Stochastic optimal control in infinite dimension. Dynamic programming and HJB equations. With a contribution by Marco Fuhrman and Gianmario Tessitore. Probability Theory and Stochastic Modelling, 82. Springer, Cham (2017).

[15] D. Ghilli, Viscosity methods for large deviations estimates of multiscale stochastic processes. ESAIM: COCV 24 (2018) 605–637.

[16] G. Guatteri and G. Tessitore, Singular limit of BSDEs and optimal control of two scale stochastic systems in infinite dimensional spaces. To appear in: Appl. Math. Optim. (2019) . | DOI

[17] Y. Kabanov and S. Pergamenshchikov, Two-scale stochastic systems. Asymptotic analysis and control. Applications of Mathematics (New York), 49. Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin (2003).

[18] Y. Kabanov and W. J. Runggaldier, On control of two-scale stochastic systems with linear dynamics in the fast variables. Math. Control Signals Syst. 9 (1996) 107–122.

[19] D. Kelome and A. Święch, Perron’s method and the method of relaxed limits for “unbounded” PDE in Hilbert spaces. Studia Math. 176 (2006) 249–277.

[20] H. J. Kushner, Weak convergence methods and singularly perturbed stochastic control and filtering problems. Systems & Control: Foundations & Applications, 3. Birkhäuser Boston, Inc., Boston, MA (1990).

[21] P.-L. Lions, Une inégalité pour les opérateurs elliptiques du second ordre. Ann. Mat. Pura Appl. 127 (1981) 1–11.

[22] P. Mannucci, C. Marchi and N. Tchou, Singular perturbations for a subelliptic operator. ESAIM: COCV 24 (2018) 1429–1451.

[23] D. S. Naidu, Singular perturbations and time scales in control theory and applications: an overview. Singularly perturbed dynamic systems in control technology. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algor. 9 (2002) 233–278.

[24] K. Suresh Kumar Singular perturbations in stochastic ergodic control problems. SIAM J. Control Optim. 50 (2012) 3203–3223.

[25] J. T. F. Yang, Singular perturbation of stochastic control and differential games. Ph.D. thesis, The University of Sydney (2020).

[26] Y. Zhang, D. S. Naidu, C. Cai and Y. Zou, Singular perturbations and time scales in control theories and applications: an overview 2002–2012. Int. J. Inf. Syst. Sci. 9 (2014) 1–36.

Cité par Sources :