No-gap second-order optimality conditions for optimal control of a non-smooth quasilinear elliptic equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 62

This paper deals with second-order optimality conditions for a quasilinear elliptic control problem with a nonlinear coefficient in the principal part that is finitely PC2 (continuous and C2 apart from finitely many points). We prove that the control-to-state operator is continuously differentiable even though the nonlinear coefficient is non-smooth. This enables us to establish “no-gap” second-order necessary and sufficient optimality conditions in terms of an abstract curvature functional, i.e., for which the sufficient condition only differs from the necessary one in the fact that the inequality is strict. A condition that is equivalent to the second-order sufficient optimality condition and could be useful for error estimates in, e.g., finite element discretizations is also provided.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020092
Classification : 49K20, 49B22, 35J62
Keywords: Optimal control, non-smooth optimization, second-order necessary optimality condition, second-order sufficient optimality condition, quasilinear elliptic equation, piecewise differentiable function
@article{COCV_2021__27_1_A64_0,
     author = {Clason, Christian and Nhu, Vu Huu and R\"osch, Arnd},
     title = {No-gap second-order optimality conditions for optimal control of a non-smooth quasilinear elliptic equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2020092},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2020092/}
}
TY  - JOUR
AU  - Clason, Christian
AU  - Nhu, Vu Huu
AU  - Rösch, Arnd
TI  - No-gap second-order optimality conditions for optimal control of a non-smooth quasilinear elliptic equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2020092/
DO  - 10.1051/cocv/2020092
LA  - en
ID  - COCV_2021__27_1_A64_0
ER  - 
%0 Journal Article
%A Clason, Christian
%A Nhu, Vu Huu
%A Rösch, Arnd
%T No-gap second-order optimality conditions for optimal control of a non-smooth quasilinear elliptic equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2020092/
%R 10.1051/cocv/2020092
%G en
%F COCV_2021__27_1_A64_0
Clason, Christian; Nhu, Vu Huu; Rösch, Arnd. No-gap second-order optimality conditions for optimal control of a non-smooth quasilinear elliptic equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 62. doi: 10.1051/cocv/2020092

[1] H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces. MOS-SIAM Series on Optimization. SIAM (2006).

[2] T. Bayen, J. F. Bonnans and F. J. Silva, Characterization of local quadratic growth for strong minima in the optimal control of semi-linear elliptic equations. Trans. Amer. Math. Soc. 366 (2014) 2063–2087.

[3] T. Bayen and F. J. Silva, Second order analysis for strong solutions in the optimal control of parabolic equations. SIAM J. Control Optim. 54 (2016) 819–844.

[4] L. M. Betz, Second-order sufficient optimality conditions for optimal control of nonsmooth, semilinear parabolic equations. SIAM J. Control Optim. 57 (2019) 4033–4062.

[5] T. Betz and C. Meyer, Second-order sufficient optimality conditions for optimal control of static elastoplasticity with hardening. ESAIM: COCV 21 (2015) 271–300.

[6] A. Binder, On an inverse problem arising in continuous casting of steel billets. Appl. Anal. 57 (1995) 341–366.

[7] J. F. Bonnans, Second-order analysis for control constrained optimal control problems of semilinear elliptic systems. Appl. Math. Optim. 38 (1998) 305–325.

[8] J. F. Bonnans and H. Zidani, Optimal control problems with partially polyhedric constraints. SIAM J. Control Optim. 37 (1999) 1726–1741.

[9] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, Berlin, Heidelberg (2000).

[10] E. Casas, Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints. ESAIM: COCV 14 (2008) 575–589.

[11] E. Casas and V. Dhamo, Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data. Numer. Math. 117 (2011) 115–145.

[12] E. Casas and V. Dhamo, Optimality conditions for a class of optimal boundary control problems with quasilinear elliptic equations. Control Cybernet. 40 (2011) 457–490.

[13] E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 1431–1454.

[14] E. Casas and F. Tröltzsch, First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim. 48 (2009) 688–718.

[15] E. Casasand F. Tröltzsch, Second order optimality conditions and their role in PDE control. Jahresber. Dtsch. Math.-Ver. 117 (2015) 3–44.

[16] M. Chipot, Elliptic Equations: An Introductory Course. Birkhäuser Verlag, Basel (2009).

[17] C. Christof and G. Wachsmuth, No-gap second-order conditions via a directional curvature functional. SIAM J. Optim. 28 (2018) 2097–2130.

[18] C. Christof and G. Wachsmuth, On second-order optimality conditions for optimal control problems governed by the obstacle problems. Optimization (2020) 1–41.

[19] A. Cianchi and V. Maz’Ya, Global gradient estimates in elliptic problems under minimal data and domain regularity. Commun. Pure Appl. Anal. 14 (2015) 285–311.

[20] C. Clason, V. H. Nhu, and A. Rösch, Optimal control of a non-smooth quasilinear elliptic equation. Math. Control Related Fields (2020).

[21] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings. Springer Monographs in Mathematics. Springer (2014).

[22] H. W. Engl and T. Langthaler, Control of the solidification front by secondary cooling in continuous casting of steel. In Case studies in industrial mathematics, Volume 2 of European Consort. Math. Indust.. Teubner, Stuttgart (1988) 51–77.

[23] S. J. Fromm, Potential space estimates for Green potentials in convex domains. Proc. Am. Math. Soc. 119 (1993) 225–233.

[24] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, Heidelberg (2001).

[25] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Advanced Pub. Program (1985).

[26] P. Kügler, Identification of a temperature dependent heat conductivity from single boundary measurements. SIAM J. Numer. Anal. 41 (2003) 1543–1563.

[27] B. T. Kien, V. H. Nhu and N. H. Son, Second-order optimality conditions for a semilinear elliptic optimal control problem with mixed pointwise constraints. Set-Valued Var. Anal 25 (2017) 177–210.

[28] K. Krumbiegel, I. Neitzel and A. Rösch, Sufficient optimality conditions for the Moreau-Yosida-type regularization concept applied to semilinear elliptic optimal control problems with pointwise state constraints. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2 (2010) 222–246.

[29] K. Kunisch and D. Wachsmuth, Sufficient optimality conditions and semi-smooth Newton methods for optimal control of stationary variational inequalities. ESAIM: COCV 18 (2012) 520–547.

[30] V. Maz’Ya, Boundedness of the gradient of a solution to the Neumann–Laplace problem in a convex domain. C. R. Math. Acad. Sci. Paris 347 (2009) 517–520.

[31] A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for a parabolic optimal control problem with pointwise control-state constraints. SIAM J. Control Optim. 42 (2003) 138–154.

[32] A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim. 17 (2006) 776–794.

[33] S. Scholtes, Introduction to Piecewise Differentiable Equations. Springer Science & Business Media (2012).

[34] F. Tröltzsch, Optimal Control of Partial Differential Equations, volume 112 of Graduate Studies in Mathematics. Theory, methods and applications, Translated fromthe 2005 German original by Jürgen Sprekels. American Mathematical Society, Providence, RI (2010).

[35] N. D. Tuan, Sequence-based necessary second-order optimality conditions for semilinear elliptic optimal control problems with nonsmooth data. Positivity 23 (2019) 195–217.

[36] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM Series on Optimization. SIAM (2011).

[37] A. Visintin, Models of Phase Transitions. Birkhäuser, Boston (1996).

[38] G. Wachsmuth, Differentiability of implicit functions: Beyond the implicit function theorem. J. Math. Anal. Appl. 414 (2014) 259–272.

[39] S. Yang, D.-C. Chang, D. Yang and Z. Fu, Gradient estimates via rearrangements for solutions of some Schrödinger equations. Anal. Appl. 16 (2018) 339–361.

[40] E. Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-Point Theorems. Springer-Verlag, New York (1986).

Cité par Sources :