A minimizing Movement approach to a class of scalar reaction–diffusion equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 18

The purpose of this paper is to introduce a Minimizing Movement approach to scalar reaction–diffusion equations of the form

$$

with parameters Λ, Σ > 0 and no-flux boundary condition

$$

which is built on their gradient-flow-like structure in the space $$ of finite nonnegative Radon measures on $$, endowed with the recently introduced Hellinger-Kantorovich distance HKΛ,Σ. It is proved that, under natural general assumptions on $$ and $$, the Minimizing Movement scheme

$$

for

$$

yields weak solutions to the above equation as the discrete time step size τ ↓ 0. Moreover, a superdifferentiability property of the Hellinger-Kantorovich distance HKΛ,Σ, which will play an important role in this context, is established in the general setting of a separable Hilbert space; that result will constitute a starting point for the study of the differentiability of HKΛ,Σ along absolutely continuous curves which will be carried out in a subsequent paper.

DOI : 10.1051/cocv/2020090
Classification : 35K57, 35K20, 35K55, 49M25, 47J25, 47J30, 28A33, 54E35, 46G99, 49Q20
Keywords: Optimal transport, gradient flows, Minimizing Movements, reactiondiffusion equations, Hellinger-Kantorovich distance
@article{COCV_2021__27_1_A20_0,
     author = {Flei{\ss}ner, Florentine Catharina},
     title = {A minimizing {Movement} approach to a class of scalar reaction{\textendash}diffusion equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2020090},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2020090/}
}
TY  - JOUR
AU  - Fleißner, Florentine Catharina
TI  - A minimizing Movement approach to a class of scalar reaction–diffusion equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2020090/
DO  - 10.1051/cocv/2020090
LA  - en
ID  - COCV_2021__27_1_A20_0
ER  - 
%0 Journal Article
%A Fleißner, Florentine Catharina
%T A minimizing Movement approach to a class of scalar reaction–diffusion equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2020090/
%R 10.1051/cocv/2020090
%G en
%F COCV_2021__27_1_A20_0
Fleißner, Florentine Catharina. A minimizing Movement approach to a class of scalar reaction–diffusion equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 18. doi: 10.1051/cocv/2020090

[1] F. Almgren, J. E. Taylor and L. Wang, Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31 (1993) 387–438.

[2] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in mathematics. ETH Zürich, Birkhäuser (2005).

[3] A. Braides, Local Minimization, Variational Evolution and Γ-Convergence. Vol. 2094 of Lecture Notes in Mathematics. Springer (2012).

[4] L. Chizat and S. Di Marino A tumor growth model of Hele-Shaw type as a gradient flow. ESAIM: COCV 26 (2020) 103.

[5] L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, An interpolating distance between optimal transport and Fisher–Rao metrics. Found. Comput. Math. 18 (2018) 1–44.

[6] L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, Unbalanced optimal transport: dynamic and Kantorovich formulations. J. Funct.Anal. 274 (2018) 3090–3123.

[7] E. De Giorgi, New problems on minimizing movements, in Boundary Value Problems for PDE and Applications, edited by C. Baiocchi and J.-L. Lions. Masson (1993) 81–98.

[8] E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980) 180–187.

[9] M. Degiovanni, A. Marino and M. Tosques, Evolution equations with lack of convexity. Nonlinear Anal. 9 (1985) 1401–1443.

[10] F. Fleißner, Gamma-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach. ESAIM: COCV 25 (2019) 28.

[11] F. Fleißner, A note on the differentiability of the Hellinger-Kantorovich distances. Preprint (2020). | arXiv

[12] F. Fleißner and G. Savaré, Reverse approximation of gradient flows as minimizing movements: a conjecture by De Giorgi. Annali della Scuola Normale di Pisa - Classe di Scienze 20 (2020) 677–720.

[13] I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces. Springer Science & Business Media (2007).

[14] T. O. Gallouët and L. Monsaingeon, A JKO splitting scheme for Kantorovich–Fisher–Rao gradient flows. SIAM J. Math. Anal. 49 (2017) 1100–1130.

[15] W. Gangbo and R. J. Mccann, The geometry of optimal transportation. Acta Math. 177 (1996) 113–161.

[16] R. Jordan, D. Kinderlehrer and F. Otto, Free energy and the Fokker-Planck equation. Physica D 107 (1997) 265–271.

[17] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck Equation. SIAM J. Math. Anal. 29 (1998) 1–17.

[18] S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A fitness-driven cross-diffusion system from population dynamics as a gradient flow. J. Differ. Equ. 261 (2016) 2784–2808.

[19] S. Kondratyev, L. Monsaingeon and D. Vorotnikov, et al., A new optimal transport distance on the space of finite Radon measures. Adv. Differ. Equ. 21 (2016) 1117–1164.

[20] S. Kondratyev and D. Vorotnikov, Nonlinear Fokker-Planck equations with reaction as gradient flows of the free energy. J. Funct. Anal. 278 (2020) 108310.

[21] M. Liero, A. Mielke and G. Savaré, On geodesic λ-convexity with respect to the Hellinger-Kantorovich distance, in preparation.

[22] M. Liero, A. Mielke and G. Savaré, Optimal transport in competition with reaction: the Hellinger–Kantorovich distance and geodesic curves. SIAM J. Math. Anal. 48 (2016) 2869–2911.

[23] M. Liero, A. Mielke and G. Savaré, Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures. Invent. Math. 211 (2018) 969–1117.

[24] A. Marino, C. Saccon and M. Tosques, Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989) 281–330.

[25] A. Mielke, Differential, energetic, and metric formulations for rate-independent processes. Springer (2011).

[26] A. Mielke, A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24 (2011) 1329.

[27] A. Mielke and F. Rindler, Reverse approximation of energetic solutions to rate-independent processes. NoDEA Nonlinear Differ. Equ. Appl. 16 (2009) 17–40.

[28] A. Mielke, R. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Eur. Math. Soc. 18 (2016) 2107–2165.

[29] F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26 (2001) 101–174.

[30] C. Villani, Topics in optimal transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003).

[31] C. Villani, Optimal transport. Old and new. Vol. 338 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (2009).

Cité par Sources :