Some isoperimetric inequalities with respect to monomial weights
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. S3

We solve a class of isoperimetric problems on $$ with respect to monomial weights. Let α and β be real numbers such that 0 ≤ α < β + 1, β ≤ 2α. We show that, among all smooth sets Ω in $$ with fixed weighted measure ∬Ωy$$dxdy, the weighted perimeter ∫$$y$$ ds achieves its minimum for a smooth set which is symmetric w.r.t. to the y-axis, and is explicitly given. Our results also imply an estimate of a weighted Cheeger constant and a bound for eigenvalues of some nonlinear problems.

DOI : 10.1051/cocv/2020054
Classification : 51M16, 46E35, 46E30, 35P15
Keywords: Isoperimetric inequality, weighted Cheeger set, eigenvalue problems
@article{COCV_2021__27_S1_A4_0,
     author = {Alvino, Angelo and Brock, Friedemann and Chiacchio, Francesco and Mercaldo, Anna and Posteraro, Maria Rosaria},
     title = {Some isoperimetric inequalities with respect to monomial weights},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2020054},
     mrnumber = {4222168},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2020054/}
}
TY  - JOUR
AU  - Alvino, Angelo
AU  - Brock, Friedemann
AU  - Chiacchio, Francesco
AU  - Mercaldo, Anna
AU  - Posteraro, Maria Rosaria
TI  - Some isoperimetric inequalities with respect to monomial weights
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2020054/
DO  - 10.1051/cocv/2020054
LA  - en
ID  - COCV_2021__27_S1_A4_0
ER  - 
%0 Journal Article
%A Alvino, Angelo
%A Brock, Friedemann
%A Chiacchio, Francesco
%A Mercaldo, Anna
%A Posteraro, Maria Rosaria
%T Some isoperimetric inequalities with respect to monomial weights
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2020054/
%R 10.1051/cocv/2020054
%G en
%F COCV_2021__27_S1_A4_0
Alvino, Angelo; Brock, Friedemann; Chiacchio, Francesco; Mercaldo, Anna; Posteraro, Maria Rosaria. Some isoperimetric inequalities with respect to monomial weights. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. S3. doi: 10.1051/cocv/2020054

[1] E. Abreu and L. G. Fernandes, On existence and nonexistence of isoperimetric inequalities with different monomial weights. Preprint (2019). | arXiv | MR

[2] A. Alvino, F. Brock, F. Chiacchio, A. Mercaldo and M. R. Posteraro, Some isoperimetric inequalities on N with respect to weights | x | α . J. Math. Anal. Appl. 451 (2017) 280–318. | MR | DOI

[3] A. Alvino, F. Brock, F. Chiacchio, A. Mercaldo and M. R. Posteraro, On weighted isoperimetric inequalities with non-radial densities. Appl. Anal. 98 (2019) 1935–1945. | MR | DOI

[4] A. Alvino, F. Brock, F. Chiacchio, A. Mercaldo and M. R. Posteraro, The isoperimetric problem for a class of non-radial weights and applications. J. Differ. Equ. 267 (2019) 6831–6871. | MR | DOI

[5] V. Bayle, A. Cañete, F. Morgan and C. Rosales, On the isoperimetric problem in Euclidean space with density. Calc. Var. PDE 31 (2008) 27–46. | MR | Zbl

[6] M. F. Betta, F. Brock, A. Mercaldo and M. R. Posteraro, A weighted isoperimetric inequality and applications to symmetrization. J. Inequal. Appl. 4 (1999) 215–240. | MR | Zbl

[7] M. F. Betta, F. Brock, A. Mercaldo and M. R. Posteraro, Weighted isoperimetric inequalities on n and applications to rearrangements. Math. Nachr. 281 (2008) 466–498. | MR | Zbl | DOI

[8] W. Boyer, B. Brown, G. Chambers, A. Loving and S. Tammen, Isoperimetric regions in n with density r p . Anal. Geom. Metr. Spaces 4 (2016) 236–265. | MR

[9] B. Brandolini, F. Della Pietra, C. Nitsch and C. Trombetti, Symmetry breaking in a constrained Cheeger type isoperimetric inequality. ESAIM: COCV 21 (2015) 359–371. | MR | Zbl | Numdam

[10] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2010). | MR | Zbl

[11] F. Brock, F. Chiacchio and A. Mercaldo, A weighted isoperimetric inequality in an orthant. Potential Anal. 41 (2012) 171–186. | MR | Zbl | DOI

[12] F. Brock, A. Mercaldo and M. R. Posteraro, On isoperimetric inequalities with respect to infinite measures. Rev. Mat. Iberoamericana 29 (2013) 665–690. | MR | Zbl | DOI

[13] D. Bucur and I. Fragalà, Proof of the honeycomb asymptotics for optimal Cheeger clusters. Adv. Math. 350 (2019) 97–129. | MR | DOI

[14] D. Bucur and I. Fragalà, A Faber-Krahn inequality for the Cheeger constant of N -gons. J. Geom. Anal. 26 (2016) 88–117. | MR | DOI

[15] X. Cabre and X. Ros-Oton, Sobolev and isoperimetric inequalities with monomial weights. J. Differ. Equ. 255 (2013) 4312–4336. | MR | Zbl | DOI

[16] X. Cabre, X. Ros-Oton and J. Serra, Euclidean balls solve some isoperimetric problems with nonradial weights. C. R. Math. Acad. Sci. Paris 350 (2012) 945–947. | MR | Zbl | DOI

[17] A. Cañete, M. Miranda Jr. and D. Vittone, Some isoperimetric problems in planes with density. J. Geom. Anal. 20 (2010) 243–290. | MR | Zbl | DOI

[18] T. Carroll, A. Jacob, C. Quinn and R. Walters, The isoperimetric problem on planes with density. Bull. Aust. Math. Soc. 78 (2008) 177–197. | MR | Zbl | DOI

[19] V. Caselles, M. Miranda Jr and M. Novaga, Total variation and Cheeger sets in Gauss space. J. Funct. Anal. 259 (2010) 1491–1516. | MR | Zbl | DOI

[20] H. Castro. Hardy-Sobolev inequalities with monomial weights. Ann. Mat. Pura Appl. 196 (2017) 579–598. | MR | DOI

[21] G. R. Chambers, Proof of the Log-Convex Density Conjecture. J. Eur. Math. Soc. 21 (2019) 2301–2332. | MR | DOI

[22] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis: A symposium in honor of Salomon Bochner (1970) 195–199. | MR | Zbl

[23] G. Csató, An isoperimetric problem with density and the Hardy Sobolev inequality in ℝ2. Differ. Int. Equ. 28 (2015) 971–988. | MR

[24] J. Dahlberg, A. Dubbs, E. Newkirk and H. Tran, Isoperimetric regions in the plane with density r p . New York J. Math. 16 (2010) 31–51. | MR | Zbl

[25] G. De Philippis, G. Franzina and A. Pratelli, Existence of isoperimetric sets with densities “converging from below” on N . J. Geom. Anal. 27 (2017) 1086–1105. | MR | DOI

[26] L. Di Giosia, J. Habib, L. Kenigsberg, D. Pittman and W. Zhu, Balls Isoperimetric in ℝ$$ with Volume and Perimeter Densities r$$ and r$$ . Preprint (2019). | arXiv

[27] A. Diaz, N. Harman, S. Howe and D. Thompson, Isoperimetric problems in sectors with density. Adv. Geom. 12 (2012) 589–619. | MR | Zbl

[28] V. Franceschi, A minimal partition problem with trace constraint in the Grushin plane. Calc. Var. Partial Differ. Equ. 56 (2017) 104. | MR | DOI

[29] V. Franceschi and R. Monti, Isoperimetric problem in H-type groups and Grushin spaces. Rev. Mat. Iberoam. 32 (2016) 1227–1258. | MR | DOI

[30] V. Franceschi and G. Stefani, Symmetric double bubbles in the Grushin plane. ESAIM: COCV 25 (2019) 37. | MR | Zbl | Numdam

[31] P. Gurka and B. Opic, Continuous and compact imbeddings of weighted Sobolev spaces II. Czechoslovak Math. J. 39 (1989) 78–94. | MR | Zbl

[32] N. Harman, S. Howe and F. Morgan, Steiner and Schwarz symmetrization in warped products and fiber bundles with density. Rev. Mat. Iberoamericana 27 (2011) 909–918. | MR | Zbl | DOI

[33] S. Howe, The Log-Convex Density Conjecture and vertical surface area in warped products. Adv. Geom. 15 (2015) 455–468. | MR | DOI

[34] I. R. Ionescu and T. Lachand-Robert, Generalized Cheeger sets related to landslides. Calc. Var. Partial Differ. Equ. 23 (2005) 227–249. | MR | Zbl | DOI

[35] B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolin. 44 (2003) 659–667. | MR | Zbl

[36] A. V. Kolesnikov and R. I. Zhdanov, On isoperimetric sets of radially symmetric measures. Concentration, functional inequalities and isoperimetry In Vol. 545 of Contemp. Math. Amer. Math. Soc., Providence, RI (2011) 123–154. | MR | Zbl | DOI

[37] C. Maderna and S. Salsa. Sharp estimates for solutions to a certain type of singular elliptic boundary value problems in two dimensions. Applicable Analysis 12 (1981) 307–321. | MR | Zbl | DOI

[38] V. Maz’Ja, Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002). In Vol. 338 of Contemp. Math. Amer. Math. Soc., Providence, RI (2003) 307–340. | Zbl | DOI

[39] V. Maz’Ja and T. Shaposhnikova, A collection of sharp dilation invariant integral inequalities for differentiable functions. Sobolev spaces in mathematics I. In Vol. 8 of Int. Math. Ser. (N.Y.). Springer (2009) 223–247. | MR | Zbl | DOI

[40] R. Monti and D. Morbidelli, Isoperimetric inequality in the Grushin plane. J. Geom. Anal. 14 (2004) 355–368. | MR | Zbl | DOI

[41] F. Morgan, Manifolds with density. Notices Amer. Math. Soc. 52 (2005) 853–858. | MR | Zbl

[42] F. Morgan, The Log-Convex Density Conjecture. Contemp. Math. 545 (2011) 209–211. | MR | Zbl | DOI

[43] F. Morgan and A. Pratelli, Existence of isoperimetric regions in n with density. Ann. Global Anal. Geom. 43 (2013) 331–365. | MR | Zbl | DOI

[44] E. Parini, An introduction to the Cheeger problem. Surv. Math. Appl. 6 (2011) 9–21. | MR

[45] A. Pratelli and G. Saracco, On the isoperimetric problem with double density. Nonlinear Anal. 177 (2018) 733–752. | MR | DOI

[46] A. Pratelli and G. Saracco, The ε - ε β property in the isoperimetric problem with double density, and the regularity of isoperimetric sets. Adv. Nonlinear Stud. 20 (2020) 539–555. | MR | DOI

[47] G. Saracco, Weighted Cheeger sets are domains of isoperimetry. Manuscripta Math. 156 (2018) 371–381. | MR | DOI

Cité par Sources :