We consider multiple integrals of the Calculus of Variations of the form E(u) = ∫ W(x, u(x), Du(x)) dx where W is a Carathéodory function finite on matrices satisfying an orientation preserving or an incompressibility constraint of the type, det Du > 0 or det Du = 1, respectively. Under suitable growth and lower semicontinuity assumptions in the u variable we prove that the functional ∫ W$$(x, u(x), Du(x)) dx is an upper bound for the relaxation of E and coincides with the relaxation if the quasiconvex envelope W$$ of W is polyconvex and satisfies p growth from below for p bigger then the ambient dimension. Our result generalises a previous one by Conti and Dolzmann [Arch. Rational Mech. Anal. 217 (2015) 413–437] relative to the case where W depends only on the gradient variable.
Accepté le :
DOI : 10.1051/cocv/2018030
Keywords: Calculus of variations, nonlinear elasticity
Cicalese, Marco 1 ; Fusco, Nicola 1
@article{COCV_2019__25__A41_0,
author = {Cicalese, Marco and Fusco, Nicola},
title = {A note on relaxation with constraints on the determinant},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2019},
publisher = {EDP Sciences},
volume = {25},
doi = {10.1051/cocv/2018030},
mrnumber = {4009552},
zbl = {1437.49026},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2018030/}
}
TY - JOUR AU - Cicalese, Marco AU - Fusco, Nicola TI - A note on relaxation with constraints on the determinant JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2018030/ DO - 10.1051/cocv/2018030 LA - en ID - COCV_2019__25__A41_0 ER -
%0 Journal Article %A Cicalese, Marco %A Fusco, Nicola %T A note on relaxation with constraints on the determinant %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2018030/ %R 10.1051/cocv/2018030 %G en %F COCV_2019__25__A41_0
Cicalese, Marco; Fusco, Nicola. A note on relaxation with constraints on the determinant. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 41. doi: 10.1051/cocv/2018030
[1] , Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. Sect. A 88 (1981) 315–328. | Zbl | MR | DOI
[2] and , On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Rational Mech. Anal. 217 (2015) 413–437. | MR | Zbl | DOI
[3] and , Convex Analysis and Variational Problems. In Vol. 28 of Classics in Applied Mathematics. SIAM (1999). | Zbl | MR
[4] , Direct Methods in the Calculus of Variations. World Scientific (2003). | Zbl | MR | DOI
[5] , Higher integrability of determinants and weak convergence in L1. J. Reine Angew. Math. 412 (1990) 20–34. | Zbl | MR
Cité par Sources :





