This paper is addressed to establishing an internal observability estimate for some linear stochastic hyperbolic equations. The key is to establish a new global Carleman estimate for forward stochastic hyperbolic equations in the -space. Different from the deterministic case, a delicate analysis on the adaptedness for some stochastic processes is required in the stochastic setting.
Accepted:
DOI: 10.1051/cocv/2016042
Keywords: Stochastic hyperbolic equation, observability estimate, global Carleman estimate, adaptedness, optimal control
Fu, Xiaoyu 1; Liu, Xu 2; Lü, Qi 1; Zhang, Xu 1
@article{COCV_2016__22_4_1382_0,
author = {Fu, Xiaoyu and Liu, Xu and L\"u, Qi and Zhang, Xu},
title = {An internal observability estimate for stochastic hyperbolic equations},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1382--1411},
publisher = {EDP Sciences},
volume = {22},
number = {4},
year = {2016},
doi = {10.1051/cocv/2016042},
zbl = {1350.93021},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2016042/}
}
TY - JOUR AU - Fu, Xiaoyu AU - Liu, Xu AU - Lü, Qi AU - Zhang, Xu TI - An internal observability estimate for stochastic hyperbolic equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1382 EP - 1411 VL - 22 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016042/ DO - 10.1051/cocv/2016042 LA - en ID - COCV_2016__22_4_1382_0 ER -
%0 Journal Article %A Fu, Xiaoyu %A Liu, Xu %A Lü, Qi %A Zhang, Xu %T An internal observability estimate for stochastic hyperbolic equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1382-1411 %V 22 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016042/ %R 10.1051/cocv/2016042 %G en %F COCV_2016__22_4_1382_0
Fu, Xiaoyu; Liu, Xu; Lü, Qi; Zhang, Xu. An internal observability estimate for stochastic hyperbolic equations. ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 4, pp. 1382-1411. doi: 10.1051/cocv/2016042
, and , Sharp sufficient conditions for the observation, control and stabilizion of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. | Zbl | DOI
J.-M. Coron, Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society Providence, RI (2007). | Zbl
, and , On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. Henri Poincaré, Anal. Non Lin. 25 (2008) 1–41. | Zbl | Numdam | DOI
, and , Exact controllability for multidimensional semilinear hyperbolic equations. SIAM J. Control Optim. 46 (2007) 1578–1614. | Zbl | DOI
L. Hörmander, Linear Partial Differential Operators. Springer-Verlag, Berlin (1963). | Zbl
, On Carleman estimates for hyperbolic equations. Asymptot. Anal. 32 (2002) 185–220. | Zbl
, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl. 21 (2013) 477–560. | Zbl | DOI
M.M. Lavrent’ev, V.G. Romanov and S.P. Shishatskiĭ, Ill-Posed Problems of Mathematical Physics and Analysis. Vol. 64 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1986). | Zbl
, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. | Zbl | MR | DOI
, Global Carleman estimate for stochastic parabolic equaitons, and its application. ESAIM: COCV 20 (2014) 823–839. | Zbl | Numdam
, Some sufficient conditions for the controllability of wave equations with variable coefficients. Acta Appl. Math. 128 (2013) 181–191. | Zbl | DOI
, Observability estimate and state observation problems for stochastic hyperbolic equations. Inverse Probl. 29 (2013) 095011. | Zbl | DOI
and , Global uniqueness for an inverse stochastic hyperbolic problem with three unknowns. Commun. Pure Appl. Math. 68 (2015) 948–963. | Zbl | DOI
, Controllability and stabilizability theory for linear partial differential equations: recent progress and open problems. SIAM Rev. 20 (1978) 639–739. | Zbl | DOI
, Explicit observability estimate for the wave equation with potential and its application. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci. 456 (2000) 1101–1115. | Zbl | DOI
, Carleman and observability estimates for stochastic wave equations. SIAM J. Math. Anal. 40 (2008) 851–868. | Zbl | DOI
, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. Henri Poincaré, Anal. Non Lin. 10 (1993) 109–129. | Zbl | MR | Numdam | DOI
Cited by Sources:






