Accepted:
DOI: 10.1051/cocv/2016037
Keywords: Sobolev spaces, degree, sphere-valued maps, homotopy classes
Brezis, HaĂŻm 1, 2; Mironescu, Petru 3; Shafrir, Itai 2
@article{COCV_2016__22_4_1204_0,
author = {Brezis, Ha{\"\i}m and Mironescu, Petru and Shafrir, Itai},
title = {Distances between homotopy classes of {W\protect\textsuperscript{s,p}(\ensuremath{\mathbb{S}}\protect\textsuperscript{N};\ensuremath{\mathbb{S}}\protect\textsuperscript{N})}},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1204--1235},
publisher = {EDP Sciences},
volume = {22},
number = {4},
year = {2016},
doi = {10.1051/cocv/2016037},
zbl = {1371.46027},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2016037/}
}
TY - JOUR AU - Brezis, Haïm AU - Mironescu, Petru AU - Shafrir, Itai TI - Distances between homotopy classes of Ws,p(𝕊N;𝕊N) JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1204 EP - 1235 VL - 22 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016037/ DO - 10.1051/cocv/2016037 LA - en ID - COCV_2016__22_4_1204_0 ER -
%0 Journal Article %A Brezis, Haïm %A Mironescu, Petru %A Shafrir, Itai %T Distances between homotopy classes of Ws,p(𝕊N;𝕊N) %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1204-1235 %V 22 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016037/ %R 10.1051/cocv/2016037 %G en %F COCV_2016__22_4_1204_0
Brezis, Haïm; Mironescu, Petru; Shafrir, Itai. Distances between homotopy classes of Ws,p(𝕊N;𝕊N). ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 4, pp. 1204-1235. doi: 10.1051/cocv/2016037
, , and , Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions: existence and bubbling. Commun. Partial Differential Equations 39 (2014) 946–1005. | Zbl | DOI
, and , Lifting in Sobolev spaces. J. Anal. Math. 80 (2000) 37–86. | Zbl | DOI
, and , Lifting, degree, and the distributional Jacobian revisited. Commun. Pure Appl. Math. 58 (2005) 529–551. | Zbl | DOI
J. Bourgain, H. Brezis and P. Mironescu, Complements to the paper Lifting, degree, and the distributional Jacobian revisited (2005) . | HAL
, and , A boundary value problem related to the Ginzburg–Landau model. Commun. Math. Phys. 142 (1991) 1–23. | Zbl | DOI
H. Brezis, Large harmonic maps in two dimensions, in Proc. of Symp. on Nonlinear variational problems, Isola d’Elba, 1983. Pitman, Boston, MA (1985) 33–46. | Zbl
H. Brezis, Metastable harmonic maps, in Metastability and incompletely posed problems, Minneapolis, 1985. Vol. 3 of IMA Vol. Math. Appl. Springer, New York (1987) 33–42. | Zbl
H. Brezis, New questions related to the topological degree, The unity of mathematics. In Vol. 244 of Progr. Math. Birkhäuser Boston, Boston, MA (2006) 137–154. | Zbl
and , Large solutions for harmonic maps in two dimensions. Commun. Math. Phys. 92 (1983) 203–215. | Zbl | DOI
H. Brezis and P. Mironescu, Sobolev maps with values into the circle. Birkhäuser. In preparation (2016).
and , Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1 (1995) 197–263. | Zbl | DOI
H. Brezis, P. Mironescu and A. Ponce,-maps with values into 𝕊1, in Geometric analysis of PDE and several complex variables. Vol. 368 of Contemp. Math. Amer. Math. Soc. Providence, RI (2005) 69–100. | Zbl
H. Brezis, P. Mironescu and I. Shafrir, Distances between classes in . In preparation (2016).
and , On the distance between homotopy classes of maps between spheres. J. Fixed Point Theory Appl. 15 (2014) 501–518. | Zbl | DOI
and , The distance between homotopy classes of 𝕊1-valued maps in multiply connected domains. Israel J. Math. 160 (2007) 41–59. | Zbl | DOI
and , Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18 (1983) 253–268. | Zbl | DOI
Cited by Sources:





