We study possibilities to control an ensemble (a parameterized family) of nonlinear control systems by a single parameter-independent control. Proceeding by Lie algebraic methods we establish genericity of exact controllability property for finite ensembles, prove sufficient approximate controllability condition for a model problem in , and provide a variant of Rashevsky−Chow theorem for approximate controllability of control-linear ensembles.
Accepted:
DOI: 10.1051/cocv/2016029
Keywords: Infinite-dimensional control systems, ensemble controllability, Lie algebraic methods
Agrachev, Andrei 1, 2; Baryshnikov, Yuliy 3; Sarychev, Andrey 4
@article{COCV_2016__22_4_921_0,
author = {Agrachev, Andrei and Baryshnikov, Yuliy and Sarychev, Andrey},
title = {Ensemble controllability by {Lie} algebraic methods},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {921--938},
publisher = {EDP Sciences},
volume = {22},
number = {4},
year = {2016},
doi = {10.1051/cocv/2016029},
zbl = {1350.93014},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2016029/}
}
TY - JOUR AU - Agrachev, Andrei AU - Baryshnikov, Yuliy AU - Sarychev, Andrey TI - Ensemble controllability by Lie algebraic methods JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 921 EP - 938 VL - 22 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016029/ DO - 10.1051/cocv/2016029 LA - en ID - COCV_2016__22_4_921_0 ER -
%0 Journal Article %A Agrachev, Andrei %A Baryshnikov, Yuliy %A Sarychev, Andrey %T Ensemble controllability by Lie algebraic methods %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 921-938 %V 22 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016029/ %R 10.1051/cocv/2016029 %G en %F COCV_2016__22_4_921_0
Agrachev, Andrei; Baryshnikov, Yuliy; Sarychev, Andrey. Ensemble controllability by Lie algebraic methods. ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 4, pp. 921-938. doi: 10.1051/cocv/2016029
and , Controllability on the group of diffeomorphisms. Ann. Inst. Henri Poincaré, Anal. Non Lin. 26 (2009) 2503–2509. | Zbl | DOI
A. Agrachev and Yu. Sachkov, Control Theory from the Geometric Viewpoint. Springer (2004). | Zbl
and , The control of rotation for asymmetric rigid body. Probl. Control Inform. Theory 12 (1983) 335–347. | Zbl
A. Agrachev and A. Sarychev, Solid Controllability in Fluid Dynamics, in Instabilities in Models Connected with Fluid Flows I, edited by C. Bardos and A. Sarychev. Springer (2008) 1–35. | Zbl
, and , Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982) 575–597. | Zbl | DOI
, and , Controllability issues for continuous-spetrum systems and ensemble controllability of Bloch equations. Comm. Math. Phys. 296 (2010) 525–557. | Zbl | DOI
, Contrôllabilité des systèmes non linéaires. C.R. Acad. Sci. 292 (1981) 535–537. | Zbl
B. Bonnard, Contrôle de l’attitude d’un satellite rigide, in Outils et modèles mathématiques pour l’automatique, l’analyse de systèmes et le traitement du signal, 3 CNRS (1983) 649–658. | Zbl
and , Criterion of controllability for systems in Banach space (generalization of Chow’s theorem). Ukrain. Matem. Zhurnal 32 (1980) 649–653 (in Russian). | Zbl
, On Infinite-Dimensional Variant of Rashevsky−Chow Theorem. Dokl. Akad. Nauk 398 (2004) 735–737.
J.S. Li and N. Khaneja, Noncommuting vector fields, polynomial approximations and control of inhomogeneous quantum ensembles, Preprint [quant-ph] (2005). | arXiv
and , Control of inhomogeneous quantum ensembles. Phys.Rev. A 73 (2006) 030302. | DOI
and , Ensemble Control of Bloch Equations. IEEE Trans. Automatic Control 54 (2009) 528–536. | Zbl | DOI
C. Lobry, Une propriete generique des couples de champs de vecteurs. Czechoslovak Mathem. J. (1972) 230–237. | Zbl
, Controllability of nonlinear systems on compact manifolds. SIAM J. Control 12 (1974) 1–4. | Zbl | DOI
and , Controllability on Infinite-Dimensional Manifolds: a Chow-Rashevsky theorem. Acta Appl. Math. 134 (2014) 229–246. | Zbl | DOI
, Some properties of vector fields, which are not altered by small perturbations. J. Differ. Eq. 20 (1976) 292–315. | Zbl | DOI
Cited by Sources:






