We consider the problem of minimizing convex combinations of the first two eigenvalues of the Dirichlet–Laplacian among open sets of of fixed measure. We show that, by purely elementary arguments, based on the minimality condition, it is possible to obtain informations on the geometry of the minimizers of convex combinations: we study, in particular, when these minimizers are no longer convex, and the optimality of balls. As an application of our results we study the boundary of the attainable set for the Dirichlet spectrum. Our techniques involve symmetry results à la Serrin, explicit constants in quantitative inequalities, as well as a purely geometrical problem: the minimization of the Fraenkel 2-asymmetry among convex sets of fixed measure.
Accepté le :
DOI : 10.1051/cocv/2016017
Keywords: Eigenvalues, Dirichlet Laplacian, Fraenkel asymmetry, attainable set
Mazzoleni, Dario 1 ; Zucco, Davide 2, 3
@article{COCV_2017__23_3_869_0,
author = {Mazzoleni, Dario and Zucco, Davide},
title = {Convex combinations of low eigenvalues, {Fraenkel} asymmetries and attainable sets},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {869--887},
year = {2017},
publisher = {EDP Sciences},
volume = {23},
number = {3},
doi = {10.1051/cocv/2016017},
mrnumber = {3660452},
zbl = {1422.47024},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2016017/}
}
TY - JOUR AU - Mazzoleni, Dario AU - Zucco, Davide TI - Convex combinations of low eigenvalues, Fraenkel asymmetries and attainable sets JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 869 EP - 887 VL - 23 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016017/ DO - 10.1051/cocv/2016017 LA - en ID - COCV_2017__23_3_869_0 ER -
%0 Journal Article %A Mazzoleni, Dario %A Zucco, Davide %T Convex combinations of low eigenvalues, Fraenkel asymmetries and attainable sets %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 869-887 %V 23 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016017/ %R 10.1051/cocv/2016017 %G en %F COCV_2017__23_3_869_0
Mazzoleni, Dario; Zucco, Davide. Convex combinations of low eigenvalues, Fraenkel asymmetries and attainable sets. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 869-887. doi: 10.1051/cocv/2016017
, and , A sharp isoperimetric inequality in the plane. J. Eur. Math. Soc. 13 (2011) 185–206. | Zbl | MR | DOI
and , On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A 467 (2011) 1577–1603. | Zbl | MR
P. Antunes and A. Henrot, On the range of the first two Dirichlet eigenvalues of the Laplacian with volume and perimeter constraints. Geometry of Solutions of Partial Differential Equations. RIMS Publ. (2013) 1850.
and , Proof of the Payne–Pòlya–Weinberger conjecture. Bull. Amer. Math. Soc. 25 (1991) 19–29. | Zbl | MR | DOI
, and , On the quantitative isoperimentric inequality in the plane. ESAIM: COCV 23 (2017) 517–549. | MR | Zbl
, Some observations on the first eigenvalue of the p-Laplacian and its connections with asymmetry. Electron. J. Differ. Eq. 2001 (2001) 1–15. | Zbl | MR
and , Sharp stability of some spectral inequalitites. Geom. Funct. Anal. 22 (2012) 107–135. | Zbl | MR | DOI
, and , Faber–Krahn inequalities in sharp quantitative form. Duke Math. J. 164 (2015) 1777–1831. | MR | Zbl | DOI
, and , On the boundary of the attainable set of the Dirichlet spectrum. Z. Angew. Math. Phys. 64 (2013) 591–597. | Zbl | MR | DOI
, Minimization of the th eigenvalue of the Dirichlet Laplacian. Arch. Ration. Mech. Anal. 206 (2012) 1073–1083. | Zbl | MR | DOI
D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Boston (2005). | Zbl | MR
, and , On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal. 30 (1999) 527–536. | Zbl | MR | DOI
, and , Minimization of with a perimeter constraint. Indiana Univ. Math. J. 58 (2009) 2709–2728. | Zbl | MR | DOI
, and , Spectral optimization problems with internal constraint. Ann. Inst. Henri Poincaré - Anal. Nonlineaire 30 (2013) 477–495. | Zbl | Numdam | MR | DOI
, , and , Lipschitz regularity of the eigenfunctions on optimal domains. Arch. Rational Mech. Anal. 216 (2015) 117–151. | Zbl | MR | DOI
and , An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122 (1993) 183–195. | Zbl | MR | DOI
and , Best constants for the isoperimetric inequality in quantitative form. J. Eur. Math. Soc. 15 (2013) 1101–1129. | Zbl | MR | DOI
and , Existence and regularity of minimizers for some spectral functionals with perimeter constraint. Appl. Math. Optim. 69 (2014) 199–231. | Zbl | MR | DOI
, and , A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182 (2010) 167–211. | Zbl | MR | DOI
and , Partially overdetermined elliptic boundary value problems. J. Differ. Eq. 245 (2008) 1299–1322. | Zbl | MR | DOI
, and , The sharp quantitative isoperimetric inequality. Ann. Math. 168 (2008) 941–980. | Zbl | MR | DOI
, and , Stability estimates for certain Faber–Krahn, Isocapacitary and Cheeger inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 8 (2009) 51–71. | Zbl | Numdam | MR
A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). | Zbl | MR
and , Minimizing the second eigenvalue of Laplace operator with Dirichlet boundary conditions. Arch. Ration. Mech. Anal. 169 (2003) 73–89. | Zbl | MR | DOI
A. Henrot and M. Pierre, Variation et optimisation de formes. Vol. 48 of Mathématiques et Applications. Springer (2005). | Zbl | MR
and , Minimal convex combinations of three sequential Laplace-Dirichlet eigenvalues. Appl. Math. Optim. 69 (2014) 123–139. | Zbl | MR | DOI
and , Range of the First Two Eigenvalues of the Laplacian. Proc. Roy. Soc. London Ser. A 447 (1994) 397–412. | Zbl | MR | DOI
and , Minimising convex combinations of low eigenvalues. ESAIM: COCV 20 (2014) 442–459. | Zbl | Numdam | MR
and , Existence of minimizers for spectral problems. J. Math. Pures Appl. 100 (2013) 433–453. | Zbl | MR | DOI
, Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315–330. | Zbl | Numdam | MR
, A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43 (1971) 304–318. | Zbl | MR | DOI
Cité par Sources :





