By disintegration of transport plans it is introduced the notion of transport class. This allows to consider the Monge problem as a particular case of the Kantorovich transport problem, once a transport class is fixed. The transport problem constrained to a fixed transport class is equivalent to an abstract Monge problem over a Wasserstein space of probability measures. Concerning solvability of this kind of constrained problems, it turns out that in some sense the Monge problem corresponds to a lucky case.
Keywords: optimal mass transportation theory, Monge − Kantorovich problem, calculus of variations, shape analysis, geometric measure theory
@article{COCV_2013__19_3_888_0,
author = {Granieri, Luca and Maddalena, Francesco},
title = {Transport problems and disintegration maps},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {888--905},
publisher = {EDP Sciences},
volume = {19},
number = {3},
year = {2013},
doi = {10.1051/cocv/2012037},
mrnumber = {3092366},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2012037/}
}
TY - JOUR AU - Granieri, Luca AU - Maddalena, Francesco TI - Transport problems and disintegration maps JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 888 EP - 905 VL - 19 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2012037/ DO - 10.1051/cocv/2012037 LA - en ID - COCV_2013__19_3_888_0 ER -
%0 Journal Article %A Granieri, Luca %A Maddalena, Francesco %T Transport problems and disintegration maps %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 888-905 %V 19 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2012037/ %R 10.1051/cocv/2012037 %G en %F COCV_2013__19_3_888_0
Granieri, Luca; Maddalena, Francesco. Transport problems and disintegration maps. ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 3, pp. 888-905. doi: 10.1051/cocv/2012037
[1] and , Caracterisation d'une solution optimale au probleme de Monge − Kantorovich. Bull. Soc. Math. France 127 (1999) 429-443. | Zbl | MR | Numdam
[2] , and , Optimal transportation, topology and uniqueness. Bull. Math. Sci. 1 (2011) 13-32.
[3] , Lecture Notes on Transport Problems, in Mathematical Aspects of Evolving Interfaces. Lect. Notes Math. vol. 1812. Springer, Berlin (2003) 1-52. | Zbl | MR
[4] , and , Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York (2000). | Zbl | MR
[5] , and , Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect. Notes Math. ETH Zürich, Birkhäuser (2005). | Zbl | MR
[6] , Young measures, superposition and transport. Indiana Univ. Math. J. 57 (2008) 247-276. | Zbl | MR
[7] and , A Planning Problem Combining Calculus of Variations and Optimal Transport. Appl. Math. Optim. 63 (2011) 1-9. | Zbl | MR
[8] and , A characterization for the Solution of the Monge − Kantorovich Mass Transference Problem. Statist. Probab. Lett. 16 (1993) 147-152. | Zbl | MR
[9] and , Modern Methods in the Calculus of Variations: Lp spaces. Springer (2007). | Zbl | MR
[10] , The Monge Transfer Problem and its Applications. Contemp. Math. 226 (1999) 79-104. | Zbl | MR
[11] and , Extreme Points of Sets of Randomized Strategies in Constrained Optimization and Control Problems. SIAM J. Optim. 15 (2005) 1085-1104. | Zbl | MR
[12] , and , On Solutions to the Mass Transfer Problem. SIAM J. Optim. 17 (2006) 485-499. | Zbl
[13] , Optimal Transport and Minimizing Measures. LAP Lambert Academic Publishing (2010).
[14] and , A Metric Approach to Elastic reformations, preprint (2012), on http://cvgmt.sns.it. | MR
[15] , Abstract Cyclical Monotonicity and Monge Solutions for the General Monge − Kantorovich Problem. Set-Valued Anal. 7 (1999) 7-32. | Zbl | MR
[16] and , Optimal Locations and the Mass Transport Problem. Contemp. Math. 226 (1998) 131-148. | Zbl | MR
[17] , Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa (2003).
[18] and , Mass Transportation Problems, Probab. Appl. Springer-Verlag, New York I (1998).
[19] , Topics in Mass Transportation. Grad. Stud. Math., vol. 58. AMS, Providence, RI (2004). | MR
[20] , Optimal Transport, Old and New. Springer (2009). | Zbl | MR
Cited by Sources:





