[Le -genre de -variétés avec le deuxième groupe homotopie fin]
We construct simply connected smooth manifolds M of dimension with the following properties: the second homotopy group is finite, M admits a smooth action by the circle and the -genus is non-zero.
Nous construisons des variétés M simplement connexes de dimension avec les propriétés suivantes : le deuxième groupe d'homotopie est fini, M admet une action lisse du cercle et le -genre est non nulle.
Accepté le :
Publié le :
Amann, Manuel 1 ; Dessai, Anand 2
@article{CRMATH_2010__348_5-6_283_0,
author = {Amann, Manuel and Dessai, Anand},
title = {The $ \stackrel{{\textasciicircum}}{A}$-genus of $ {S}^{1}$-manifolds with finite second homotopy group},
journal = {Comptes Rendus. Math\'ematique},
pages = {283--285},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {5-6},
doi = {10.1016/j.crma.2010.01.011},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.01.011/}
}
TY - JOUR
AU - Amann, Manuel
AU - Dessai, Anand
TI - The $ \stackrel{ˆ}{A}$-genus of $ {S}^{1}$-manifolds with finite second homotopy group
JO - Comptes Rendus. Mathématique
PY - 2010
SP - 283
EP - 285
VL - 348
IS - 5-6
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2010.01.011/
DO - 10.1016/j.crma.2010.01.011
LA - en
ID - CRMATH_2010__348_5-6_283_0
ER -
%0 Journal Article
%A Amann, Manuel
%A Dessai, Anand
%T The $ \stackrel{ˆ}{A}$-genus of $ {S}^{1}$-manifolds with finite second homotopy group
%J Comptes Rendus. Mathématique
%D 2010
%P 283-285
%V 348
%N 5-6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.01.011/
%R 10.1016/j.crma.2010.01.011
%G en
%F CRMATH_2010__348_5-6_283_0
Amann, Manuel; Dessai, Anand. The $ \stackrel{ˆ}{A}$-genus of $ {S}^{1}$-manifolds with finite second homotopy group. Comptes Rendus. Mathématique, Tome 348 (2010) no. 5-6, pp. 283-285. doi: 10.1016/j.crma.2010.01.011
[1] Spin-manifolds and group actions, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, 1970, pp. 18-28
[2] Characteristic classes and homogeneous spaces. II, Amer. J. Math., Volume 81 (1959), pp. 315-382
[3] On the rigidity theorems of Witten, J. Amer. Math. Soc., Volume 2 (1989), pp. 137-186
[4] Representations at fixed points of smooth actions of compact groups, Ann. of Math. (2), Volume 89 (1969), pp. 515-532
[5] Surgery on Simply Connected Manifolds, Springer, 1972
[6] -genus on non-spin manifolds with actions and the classification of positive quaternion-Kähler 12-manifolds, J. Differential Geom., Volume 61 (2002), pp. 341-364
[7] H. Herrera, R. Herrera, Erratum to [6], in press
[8] Elliptic genera, involutions and homogeneous spin manifolds, Geom. Dedicata, Volume 35 (1990), pp. 309-343
[9] Quaternion-Kähler geometry, Essays on Einstein Manifolds, Surveys in Differential Geometry, vol. VI, Int. Press, 1999, pp. 83-121
Cité par Sources :





